scholarly journals Role of 20-HETE in mediating the effect of dietary K intake on the apical K channels in the mTAL

2001 ◽  
Vol 280 (2) ◽  
pp. F223-F230 ◽  
Author(s):  
Ruimin Gu ◽  
Yuan Wei ◽  
Houli Jiang ◽  
Michael Balazy ◽  
Wenhui Wang

We have used the patch-clamp technique to study the effect of dietary K intake on the apical K channels in the medullary thick ascending limb (mTAL) of rat kidneys. The channel activity, defined by the number of channels in a patch and the open probability ( NP o), of the 30- and 70-pS K channels, was 0.18 and 0.11, respectively, in the mTAL from rats on a K-deficient diet. In contrast, NP o of the 30- and 70-pS K channels increased to 0.60 and 0.80, respectively, in the tubules from animals on a high-K diet. The concentration of 20-hydroxyeicosatetraenoic acid (20-HETE) measured with gas chromatography-mass spectrometry was 0.8 pg/μg protein in the mTAL from rats on a high-K diet and increased significantly to 4.6 pg/μg protein in the tubules from rats on a K-deficient diet. Addition of N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) or 17-octadecynoic acid (17-ODYA), agents that inhibit the formation of 20-HETE, had no significant effect on the activity of the 30-pS K channels. However, DDMS/17-ODYA significantly increased the activity of the apical 70-pS K channel from 0.11 to 0.91 in the mTAL from rats on a K-deficient diet. In contrast, inhibition of the cytochrome P-450 metabolism of arachidonic acid increased NP o from 0.64 to 0.81 in the tubules from animals on a high-K diet. Furthermore, the sensitivity of the 70-pS K channel to 20-HETE was the same between rats on a high-K diet and on a K-deficient diet. Finally, the pretreatment of the tubules with DDMS increased NP o of the 70-pS K channels in the mTAL from rats on a K-deficient diet to 0.76. We conclude that an increase in 20-HETE production is involved in reducing the activity of the apical 70-pS K channels in the mTAL from rats on a K-deficient diet.

Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 710-710
Author(s):  
WenHui Wang ◽  
RuiMin Gu ◽  
Yuan Wei ◽  
Michael Balazy ◽  
Houli Jiang

P95 We have used the patch clamp technique to study the effect of dietary-K intake on the apical K channels in the medullary thick ascending limb (mTAL) of rat kidneys. The channel activity, defined by NPo, of the 30 pS and 70 pS K channel was 0.18 and 0.11 in the mTAL from rats on a K-deficient diet, respectively. In contrast, NPo of the 30 pS and the 70 pS K channels increased to 0.60 and 0.80 in the tubules from animals on a high-K diet, respectively. We have also used GC/MC to measure the intracellular production of 20-hydroxyeicosanotetraenoic acid (20-HETE) in the mTAL. The concentration of 20-HETE was 0.8 pg/μg protein in the mTAL from rats on a high-K diet and increased significantly to 4.6 pg/μg protein in the tubules from rats on a K-deficient diet. Addition of N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) or 17-octadecynoic acid (17ODYA), agents which inhibit the formation of 20-HETE, had no significant effect on the activity of the 30 pS K channels. However, DDMS/17ODYA significantly increased the activity of the apical 70 pS K channel from 0.11 to 0.91 in the mTAL from rats on a K-deficient diet. In contrast, inhibition of the cytochrome P450 metabolism of arachidonic acid (AA) increased NPo from 0.64 to 0.81 in the tubules from animals on a high-K diet. Furthermore, the concentration of 20-HETE required to block the channel activity by 50% was the same in the mTAL from rats on a high K diet as that on a K-deficient diet. This indicates that the diminished response of the 70 pS K channel to the inhibition of P450 metabolism of AA is not the result of decreasing 20-HETE sensitivity in the mTAL from rats on a high K diet. Finally, the pretreatment of the tubules with DDMS increased NPo of the 70 pS K channels in the mTAL from rats on a K-deficient diet to 0.76, a value which is not significantly different from the NPo in the tubules from rats on a high-K diet. We conclude that an increase in 20-HETE production is involved in reducing the activity of the apical 70 pS K channels in the mTAL from rats on a K-deficient diet.


1994 ◽  
Vol 267 (4) ◽  
pp. F599-F605 ◽  
Author(s):  
W. H. Wang

We have used the patch-clamp technique to study the apical K+ channels in the thick ascending limb (TAL) of the rat kidney. Two types of K+ channels, a low-conductance and an intermediate-conductance K+ channel, were identified in both cell-attached and inside-out patches. We confirmed the previously reported intermediate-conductance K+ channel (72 pS), which is inhibited by millimolar cell ATP, acidic pH, Ba2+, and quinidine (4). We now report a second K+ channel in apical membrane of the TAL. The slope conductance of this low-conductance K+ channel is 30 pS, and its open probability is 0.80 in cell-attached patches. This channel is not voltage dependent, and application of 2 mM ATP in the bath inhibits channel activity in inside-out patches. In addition, 250 microM glyburide, an ATP-sensitive K+ channel inhibitor, blocks channel activity, whereas the same concentration of glyburide has no inhibitory effect on the 72-pS K+ channel. Channel activity of the 30-pS K+ channel decreases rapidly upon excision of patches (channel run down). Application of 0.1 mM ATP and the catalytic subunit of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) restores channel activity. Furthermore, addition of 0.1 mM 8-(4-chlorophenylthio)-cAMP or 50-100 pM vasopressin in the cell-attached patches increases channel activity. In conclusion, two types of K+ channels are present in the apical membrane of TAL of rat kidney, and PKA plays an important role in modulation of the low-conductance K+ channel activity.


2002 ◽  
Vol 283 (3) ◽  
pp. F407-F414 ◽  
Author(s):  
Rui-Min Gu ◽  
Wen-Hui Wang

We have used the patch-clamp technique to study the effect of arachidonic acid (AA) on the basolateral K channels in the medullary thick ascending limb (mTAL) of rat kidney. An inwardly rectifying 50-pS K channel was identified in cell-attached and inside-out patches in the basolateral membrane of the mTAL. The channel open probability ( P o) was 0.51 at the spontaneous cell membrane potential and decreased to 0.25 by 30 mV hyperpolarization. The addition of 5 μM AA decreased channel activity, identified as NP o, from 0.58 to 0.08 in cell-attached patches. The effect of AA on the 50-pS K channel was specific because 10 μM cis-11,14,17-eicosatrienoic acid had no significant effect on channel activity. To determine whether the effect of AA was mediated by AA per se or by its metabolites, we examined the effect of AA on channel activity in the presence of indomethacin, an inhibitor of cyclooxygenase, or N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), an inhibitor of cytochrome P-450 monooxygenase. Inhibition of cyclooxygenase increased channel activity from 0.54 to 0.9. However, indomethacin did not abolish the inhibitory effect of AA on the 50-pS K channel. In contrast, inhibition of cytochrome P-450 metabolism not only increased channel activity from 0.49 to 0.83 but also completely abolished the effect of AA. Moreover, addition of DDMS can reverse the inhibitory effect of AA on channel activity. The notion that the effect of AA was mediated by cytochrome P-450-dependent metabolites of AA is also supported by the observation that addition of 100 nM of 20-hydroxyeicosatetraenoic acid, a main metabolite of AA in the mTAL, can mimic the effect of AA. We conclude that AA inhibits the 50-pS K channel in the basolateral membrane of the mTAL and that the effect of AA is mainly mediated by cytochrome P-450-dependent metabolites of AA.


1987 ◽  
Vol 252 (2) ◽  
pp. C121-C127 ◽  
Author(s):  
S. E. Guggino ◽  
W. B. Guggino ◽  
N. Green ◽  
B. Sacktor

The conductive properties of a clone of medullary thick ascending limb (MTAL) cells (GRB-MAL1) were assessed using conventional microelectrodes and the patch clamp technique. The apical cell membrane potential (Va) of MTAL cells was -46 +/- 3 mV. Addition of Ba2+ (1 mM) to the apical solution induced a 22 +/- 2 mV depolarization of Va, whereas furosemide hyperpolarized Va by -5 +/- 1 mV. In the cell-attached patch configuration, the most frequently occurring channel had a single channel conductance of 121 +/- 5 pS and carried outward current. In excised patches, current movement was down the electrochemical K+ gradient. Fluctuations were activated by depolarization of Va and by increasing Ca2+ concentration on the intracellular face. Micromolar amounts of Ba2+ on the intracellular face of the membrane inhibited channel activity. We conclude that cultures of MTAL cells GRB-MAL1 retain at least two of the properties of the mature phenotype, namely, an apical K+ conductance and a sensitivity to loop diuretics; the most frequently occurring channel in the apical cell membrane is a Ca2+-activated, maxi-K+ channel; and, finally Ca2+-activated K+ channels may play a role in generating the apical K+ conductance in cultured MTAL cells.


2004 ◽  
Vol 287 (5) ◽  
pp. F954-F959 ◽  
Author(s):  
Dimin Li ◽  
Yuan Wei ◽  
Wen-Hui Wang

We used the patch-clamp technique to study the effect of adenosine on the apical 70-pS K channel in the thick ascending limb (TAL) of the rat kidney. Application of 1 μM cyclohexyladenosine (CHA), an adenosine analog, stimulated apical 70-pS K channel activity and increased the product of channel open probability and channel number ( NPo) from 0.34 to 0.7. Also, addition of CGS-21680, a specific A2a adenosine receptor agonist, mimicked the effect of CHA and increased NPo from 0.33 to 0.77. The stimulatory effect of CHA and CGS-21680 was completely blocked by H89, an inhibitor of protein kinase A (PKA), or by inhibition of adenylate cyclase with SQ-22536. This suggests that the stimulatory effect of adenosine analogs is mediated by a PKA-dependent pathway. The effect of adenosine analog was almost absent in the TAL from rats on a K-deficient (KD) diet for 7 days. Application of DDMS, an agent that inhibits cytochrome P-450 hydrolase, not only significantly increased the activity of the 70-pS K channel but also restored the stimulatory effect of CHA on the 70-pS K channel in the TAL from rats on a KD diet. Also, the effect of CHA was absent in the presence of 20-HETE. Inhibition of PKA blocked the stimulatory effect of CHA on the apical 70-pS K channel in the presence of DDMS in the TAL from rats on a KD diet. We conclude that stimulation of adenosine receptor increases the apical 70-pS K channel activity via a PKA-dependent pathway and that the effect of adenosine on the apical 70-pS K channel is suppressed by low-K intake. Moreover, the diminished response to adenosine is the result of increase in 20-HETE formation, which inhibits the cAMP-dependent pathway in the TAL from rats on a KD diet.


2001 ◽  
Vol 281 (4) ◽  
pp. C1188-C1195 ◽  
Author(s):  
Rui-Min Gu ◽  
Yuan Wei ◽  
John R. Falck ◽  
U. Murali Krishna ◽  
Wen-Hui Wang

We have previously demonstrated that the protein level of c-Src, a nonreceptor type of protein tyrosine kinase (PTK), was higher in the renal medulla from rats on a K-deficient (KD) diet than that in rats on a high-K (HK) diet (Wang WH, Lerea KM, Chan M, and Giebisch G. Am J Physiol Renal Physiol 278: F165–F171, 2000). We have now used the patch-clamp technique to investigate the role of PTK in regulating the apical K channels in the medullary thick ascending limb (mTAL) of the rat kidney. Inhibition of PTK with herbimycin A increased NP o, a product of channel number ( N) and open probability ( P o), of the 70-pS K channel from 0.12 to 0.42 in the mTAL only from rats on a KD diet but had no significant effect in tubules from animals on a HK diet. In contrast, herbimycin A did not affect the activity of the 30-pS K channel in the mTAL from rats on a KD diet. Moreover, addition of N-methylsulfonyl-12,12-dibromododec-11-enamide, an agent that inhibits the cytochrome P-450-dependent production of 20-hydroxyeicosatetraenoic acid, further increased NP o of the 70-pS K channel in the presence of herbimycin A. Furthermore, Western blot detected the presence of PTP-1D, a membrane-associated protein tyrosine phosphatase (PTP), in the renal outer medulla. Inhibition of PTP with phenylarsine oxide (PAO) decreased NP o of the 70-pS K channel in the mTAL from rats on a HK diet. However, PAO did not inhibit the activity of the 30-pS K channel in the mTAL. The effect of PAO on the 70-pS K channel was due to indirectly stimulating PTK because pretreatment of the mTAL with herbimycin A abolished the inhibitory effect of PAO. Finally, addition of exogenous c-Src reversibly blocked the activity of the 70-pS K channel in inside-out patches. We conclude that PTK and PTP have no effect on the low-conductance K channels in the mTAL and that PTK-induced tyrosine phosphorylation inhibits, whereas PTP-induced tyrosine dephosphorylation stimulates, the apical 70-pS K channel in the mTAL.


1997 ◽  
Vol 273 (3) ◽  
pp. F421-F429 ◽  
Author(s):  
W. Wang ◽  
M. Lu ◽  
M. Balazy ◽  
S. C. Hebert

Raising extracellular Ca2+ (Ca2+o) stimulating the Ca(2+)-sensing receptor (CaR) decreased the activity of the apical 70-pS K+ channel via a cytochrome P-450-dependent mechanism in the thick ascending limb (TAL) of the rat kidney [W. H. Wang, M. Lu, and S. C. Hebert. Am. J. Physiol. 270 (Cell Physiol. 39): C103-C111, 1996]. We have now used the patch-clamp technique and fluorescent dyes to investigate the signaling mechanism by which this effect is produced. Addition of 500 microM gadolinium (Gd3+), an agent which has been shown to activate the CaR (E. M. Brown, G. Gamba, D. Riccardi, M. Lombardi, R. Butters, O. Kifor, A. Sun, M. A. Hediger, J. Lytton, and S. C. Hebert. Nature 366: 575-580, 1993), mimics the inhibitory effect of raising Ca2+o from 1.1 to 5 mM on channel activity. Effects of the high Ca2+o and Gd3+ were abolished by blockade of phospholipase A2 (PLA2) but not by inhibition of phospholipase C (PLC). Raising Ca2+o also increased 20-hydroxyeicosatetraenoic acid production significantly. To investigate the effect of stimulation of the CaR on intracellular Ca2+ (Ca2+i), we used the acetoxymethyl ester of fura 2 to monitor the Ca2+i. Raising Ca2+o from 1.1 to 5 mM increased the Ca2+i significantly from 50 to 150 nM. However, addition of thapsigargin failed to abolish the effect of 5 mM Ca2+o on Ca2+i. Also, application of Gd3+ only slightly increased the Ca2+i, suggesting that elevation of the Ca2+i by high Ca2+o was the result of an influx of Ca2+ rather than enhanced Ca2+ release from Ca2+ stores. That the increase in Ca2+ influx is not mainly responsible for the effect of stimulating the CaR on channel activity is further supported by experiments in which 500 microM Gd3+ inhibited the K+ channel in cell-attached patches in a Ca(2+)-free bath. Furthermore, addition of 500 microM Gd3+ or 5 mM Ca2+o decreased intracellular Na+ measured with fluorescent sodium indicator, suggesting inhibition of Na+ transport. We conclude that PLA2 is involved in the stimulation of the CaR-induced inhibition of apical K+ channels in the TAL.


2015 ◽  
Vol 308 (11) ◽  
pp. F1288-F1296 ◽  
Author(s):  
Chengbiao Zhang ◽  
Lijun Wang ◽  
Xiao-Tong Su ◽  
Dao-Hong Lin ◽  
Wen-Hui Wang

The aim of the present study is to examine the role of Kcnj10 (Kir.4.1) in contributing to the basolateral K conductance in the cortical thick ascending limb (cTAL) using Kcnj10+/+ wild-type (WT) and Kcnj10−/− knockout (KO) mice. The patch-clamp experiments detected a 40- and an 80-pS K channel in the basolateral membrane of the cTAL. Moreover, the probability of finding the 40-pS K was significantly higher in the late part of the cTAL close to the distal convoluted tubule than those in the initial part. Immunostaining showed that Kcnj10 staining was detected in the basolateral membrane of the cTAL but the expression was not uniformly distributed. The disruption of Kcnj10 completely eliminated the 40-pS K channel but not the 80-pS K channel, suggesting the role of Kcnj10 in forming the 40-pS K channel of the cTAL. Also, the disruption of Kcnj10 increased the probability of finding the 80-pS K channel in the cTAL, especially in the late part of the cTAL. Because the channel open probability of the 80-pS K channel in KO was similar to those of WT mice, the increase in the 80-pS K channel may be achieved by increasing K channel number. The whole cell recording further showed that K reversal potential measured with 5 mM K in the bath and 140 mM K in the pipette was the same in the WT and KO mice. Moreover, Western blot and immunostaining showed that the disruption of Kcnj10 did not affect the expression of Na-K-Cl cotransporter 2 (NKCC2). We conclude that Kir.4.1 is expressed in the basolateral membrane of cTAL and that the disruption of Kir.4.1 has no significant effect on the membrane potential of the cTAL and NKCC2 expression.


2007 ◽  
Vol 293 (1) ◽  
pp. F299-F305 ◽  
Author(s):  
Ruimin Gu ◽  
Jing Wang ◽  
Yunhong Zhang ◽  
Wennan Li ◽  
Ying Xu ◽  
...  

We used the patch-clamp technique to examine the effect of adenosine on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. A 50-pS inwardly rectifying K channel was detected in the basolateral membrane, and the channel activity was decreased by hyperpolarization. Application of adenosine (10 μM) increased the activity of basolateral 50 pS K channels, defined by NPo, from 0.21 to 0.41. The effect of adenosine on the 50 pS K channels was mimicked by cyclohexyladenosine (CHA), which increased channel activity by a dose-dependent manner. However, inhibition of the A1 adenosine receptor with 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX) failed to block the effect of CHA. In contrast, application of 8-(3-chlorostyryl) caffeine (CSC), an A2 adenosine antagonist, abolished the stimulatory effect of CHA. The possibility that the effect of adenosine and adenosine analog on the basolateral 50 pS K channel was the result of activation of the A2 adenosine receptor was also suggested by the observation that application of CGS-21680, a selected A2A adenosine receptor agonist, increased the channel activity. Also, inhibition of PKA with N-[2-(methylamino)ethyl]-5-isoquinoline sulfonamide-2HC1 abolished the stimulatory effect of CHA on the basolateral 50 pS K channel. Moreover, addition of the membrane-permeable cAMP analog increases the activity of 50 pS K channels. We conclude that adenosine activates the 50 pS K channel in the basolateral membrane of the TAL and the stimulatory effect is mainly mediated by a PKA-dependent pathway via the A2 adenosine receptor in the TAL.


1997 ◽  
Vol 272 (3) ◽  
pp. F397-F404 ◽  
Author(s):  
L. M. Satlin ◽  
L. G. Palmer

Net K+ secretion is not detected in cortical collecting ducts (CCDs) isolated from newborn rabbits and perfused in vitro. To establish whether a low apical K+ permeability of the neonatal principal cell limits K+ secretion early in life, we used the patch-clamp technique in split-open CCDs isolated from maturing rabbits to study the properties and density of conducting K+ channels in principal cells. With KCl in the pipette and a NaCl solution warmed to 37 degrees C in the bath, inward currents with a conductance of approximately 42 pS were observed in 0% (0 out of 13 or 0/13), 10% (2/21), 18% (5/28), 29% (4/14), and 56% (10/18) of cell-attached patches obtained in 1-, 2-, 3-, 4-, and 5-wk-old animals, respectively. The conductance and reversal potential of this channel led us to suspect that it represented the low-conductance K+ channel previously described in the rat CCD by L. G. Palmer, L. Antonian, and G. Frindt (J. Gen. Physiol. 104: 693-710, 1994). The mean number of open channels per patch (NPo) increased progressively (P < 0.05) after birth, from 0 at 1 wk, to 0.06 +/- 0.04 at 2 wk, to 0.40 +/- 0.18 at 3 wk, to 0.74 +/- 0.41 at 4 wk, and to 1.06 +/- 0.28 at 5 wk. The increase in NPo appeared to be due primarily to a developmental increase in N, which is the number of channels; open probability, Po, remained constant at approximately 0.5 for all channels identified after the 2nd wk of life. The increase in number of conducting K+ channels during postnatal life is likely to contribute to the maturational increase in net K+ secretion in the CCDs.


Sign in / Sign up

Export Citation Format

Share Document