Some biochemical and physiological features of normal monkeys (Macaca radiata)

1963 ◽  
Vol 18 (6) ◽  
pp. 1231-1233 ◽  
Author(s):  
S. G. Srikantia ◽  
C. Gopalan

Determinations of body-fluid spaces with antipyrine for total-body water and sodium thiocyanate for extracellular fluid volume, hematological indices, and several serum constituents in about 500 Macaca radiata monkeys revealed that most of the values obtained were very similar to values obtained in man. body fluid spaces; hematology Submitted on April 22, 1963

2004 ◽  
Vol 1 (2) ◽  
pp. 131-139 ◽  
Author(s):  
Michael I Lindinger ◽  
Gloria McKeen ◽  
Gayle L Ecker

AbstractThe purpose of the present study was to determine the time course and magnitude of changes in extracellular and intracellular fluid volumes in relation to changes in total body water during prolonged submaximal exercise and recovery in horses. Seven horses were physically conditioned over a 2-month period and trained to trot on a treadmill. Total body water (TBW), extracellular fluid volume (ECFV) and plasma volume (PV) were measured at rest using indicator dilution techniques (D2O, thiocyanate and Evans Blue, respectively). Changes in TBW were assessed from measures of body mass, and changes in PV and ECFV were calculated from changes in plasma protein concentration. Horses exercised by trotting on a treadmill for 75–120 min incurred a 4.2% decrease in TBW. During exercise, the entire decrease in TBW (mean±standard error: 12.8±2.0 l at end of exercise) could be attributed to the decrease in ECFV (12.0±2.4 l at end of exercise), such that there was no change in intracellular fluid volume (ICFV; 0.9±2.4 l at end of exercise). PV decreased from 22.0±0.5 l at rest to 19.8±0.3 l at end of exercise and remained depressed (18–19 l) during the first 2 h of recovery. Recovery of fluid volumes after exercise was slow, and characterized by a further transient loss of ECFV (first 30 min of recovery) and a sustained increase in ICFV (between 0.5 and 3.5 h of recovery). Recovery of fluid volumes was complete by 13 h post exercise. It is concluded that prolonged submaximal exercise in horses favours net loss of fluid from the extracellular fluid compartment.


2019 ◽  
pp. 04-13
Author(s):  
Colin Jones ◽  
Louise Wells ◽  
Graham Woodrow ◽  
David Ashford

Background: Metabolic acidosis in chronic kidney disease (CKD) is often treated with oral sodium bicarbonate. There is limited evidence around the effects of sodium bicarbonate on extracellular fluid and blood pressure in CKD. Methods: In a double blind randomised comparison patients with stage 3-5 CKD were randomised to either oral sodium bicarbonate 1.5 g three times a day (n=18) or placebo (n=21) for 4 weeks. Assessments performed at 0 and 4 weeks included: body weight, office blood pressure and assessment for peripheral/pulmonary oedema; serum creatinine, electrolytes and venous bicarbonate; 24-hour urine for sodium excretion; extracellular fluid volume and total body water determined by sodium bromide and deuterium oxide dilution respectively; extracellular fluid volume and total body water by bioimpedance. Differences between the active and placebo groups at week 4 were analysed by ANCOVA. Results: At week 4, serum bicarbonate was higher (25.6±2.4 vs 23.3±3.1 mmol/l) and blood urea lower (14.2±5.6 vs 17.0±5.8 mmol/l) in the active treatment group. Urine sodium concentration was also higher (82.7±25.3 vs 59.0±21.9 mmol/l). Extracellular fluid volume (20.0±4.3 vs 18.0±2.9) and total body water (42.3±9.6 vs 39.0±6.8) measured by bioimpedance and total body water by deuterium dilution (41.7±8.3 vs 39.4±6.2) were significantly greater in the treatment arm at week 4. Differences in systolic and diastolic blood pressure did not reach statistical significance. Conclusions: Oral sodium bicarbonate has a biological effect and increases body water content, without evidence of a clinical consequence. This may reflect the fact that some of the ingested sodium is excreted in the urine.


1956 ◽  
Vol 34 (5) ◽  
pp. 959-966 ◽  
Author(s):  
C. Deb ◽  
J. S. Hart

Body fluid volumes and hematological values have been compared in rats exposed to 6 °C. for various periods of time and in rats at 30 °C. for comparable periods. Absolute blood and plasma volumes (T1824 space) decreased with time of exposure to 30 °C, while extracellular fluid volume (sodium space), total body water, and body weight increased. Rats transferred from the warm to the cold environment had larger plasma and blood volumes than those of rats at 30 °C. after the first week of exposure. After five weeks, blood volume was 22% greater on an absolute basis and 30% greater relative to total body water than that of the larger rats at 30 °C. There were no differences in extracellular fluid volumes between warm and cold exposed rats at comparable intervals. Total water and intracellular water tended to be greater in rats at 30 °C. on an absolute basis but they were much greater per unit body weight in rats at 6 °C. No differences were observed in red blood cell counts, in hemoglobin concentration, or in plasma specific gravity between warm and cold exposed rats, but there was an increased hematocrit, increased corpuscular volume, and decreased corpuscular hemoglobin content in rats kept at 6 °C. Hemoglobin, red cells, and plasma specific gravity increased with time in both groups.


2000 ◽  
Vol 89 (2) ◽  
pp. 663-671 ◽  
Author(s):  
Mariann Forro ◽  
Scott Cieslar ◽  
Gayle L. Ecker ◽  
Angela Walzak ◽  
Jay Hahn ◽  
...  

The purposes of this study were 1) to determine the compartmentation of body water in horses by using indicator dilution techniques and 2) to simultaneously measure bioelectrical impedance to current flow at impulse current frequencies of 5 and 200 kHz to formulate predictive equations that could be used to estimate total body water (TBW), extracellular fluid volume (ECFV), and intracellular fluid volume (ICFV). Eight horses and ponies weighing from 214 to 636 kg had catheters placed into the left and right jugular veins. Deuterium oxide, sodium thiocyanate, and Evans blue were infused for the measurement of TBW, ECFV, and plasma volume (PV), respectively. Bioelectrical impedance was measured by using a tetrapolar electrode configuration, with electrode pairs secured above the knee and hock. Measured TBW, ECFV, and PV were 0.677 ± 0.022, 0.253 ± 0.006, and 0.040 ± 0.002 l/kg body mass, respectively. Strong linear correlations were determined among measured variables that allowed for the prediction of TBW, ECFV, ICFV, and PV from measures of horse length or height and impedance. It is concluded that bioelectrical impedance analysis (BIA) can be used to improve the predictive accuracy of noninvasive estimates of ECFV and PV in euhydrated horses at rest.


1982 ◽  
Vol 62 (1) ◽  
pp. 43-49 ◽  
Author(s):  
J. H. Bauer ◽  
C. S. Brooks

1. Erythrocyte mass, plasma volume (PV), extracellular fluid volume (ECFV) and total body water were simultaneously measured in 30 normotensive and 30 normal-renin hypertensive Caucasian male subjects for accurate determination of the presence or absence of a disorder(s) in body-fluid composition in hypertension. 2. The results indicate that plasma volume and total blood volume are lower in hypertensive subjects than in normotensive control subjects. The PV comprised 19% of the ECFV in both control and hypertensive subjects. 3. ECFV was lower in hypertensive subjects than in normotensive control subjects; the PV and interstitial fluid components of the ECFV were reduced by similar proportions. The ECFV, furthermore, comprised a smaller portion of the total body water in hypertensive subjects than that in control subjects. 4. We conclude that in the hypertensive state there is a reduction in the ECFV, but that there is no change in the partition of the ECFV between the plasma and interstitial components.


1983 ◽  
Vol 245 (6) ◽  
pp. R901-R905 ◽  
Author(s):  
S. L. Bealer ◽  
E. G. Schneider

The effects of electrolytic ablation of the periventricular tissue surrounding the anteroventral third ventricle (AV3V) of the rat brain on body fluid distribution and the renin-aldosterone system were determined. Rats underwent either ablation of AV3V periventricular tissue or control surgeries. After recovery, animals were implanted with femoral arterial and jugular venous catheters, and sodium space and plasma volume were measured by calculating the dilution of intravenous injections of 22Na- and 125I-labeled serum albumin, respectively. Total body water was determined in separate groups of rats by desiccation. Other animals with AV3V lesions and control rats were used to measure urinary sodium excretion and plasma renin (Prenin) and aldosterone (Paldo) concentrations while volume replete and after volume depletion. Animals with AV3V lesions had expanded extracellular fluid volume and decreased plasma volume, but total body water was comparable with control-operated rats. Volume-replete and volume-depleted rats with AV3V lesions had significantly higher Prenin than control animals in similar volume states. Although Paldo was not different between groups in the volume-replete state, it was significantly greater in rats with AV3V lesions than in control animals after volume depletion. These data demonstrate that AV3V periventricular ablation results in chronic alterations in the normal body fluid distribution but does not diminish the rats' ability to increase Prenin and Paldo or decrease sodium excretion during volume depletion.


Sign in / Sign up

Export Citation Format

Share Document