Determinants of maximal expiratory flow from the lungs.

1967 ◽  
Vol 23 (5) ◽  
pp. 646-662 ◽  
Author(s):  
N B Pride ◽  
S Permutt ◽  
R L Riley ◽  
B Bromberger-Barnea
1979 ◽  
Vol 47 (1) ◽  
pp. 8-12 ◽  
Author(s):  
C. F. O'Cain ◽  
M. J. Hensley ◽  
E. R. McFadden ◽  
R. H. Ingram

We examined the bronchoconstriction produced by airway hypocapnia in normal subjects. Maximal expiratory flow at 25% vital capacity on partial expiratory flow-volume (PEFV) curves fell during hypocapnia both on air and on an 80% helium- 20% oxygen mixture. Density dependence also fell, suggesting predominantly small airway constriction. The changes seen on PEFV curves were not found on maximal expiratory flow-volume curves, indicating the inhalation to total lung capacity substantially reversed the constriction. Pretreatment with a beta-sympathomimetic agent blocked the response, whereas atropine pretreatment did not, suggesting that hypocapnia affects airway smooth muscle directly, not via cholinergic efferents.


2002 ◽  
Vol 93 (3) ◽  
pp. 1069-1074 ◽  
Author(s):  
A. Weist ◽  
T. Williams ◽  
J. Kisling ◽  
C. Clem ◽  
R. S. Tepper

Volume history is an important determinant of airway responsiveness. In healthy adults undergoing airway challenge, deep inspiration (DI) provides bronchodilating and bronchoprotective effects; however, the effectiveness of DI is limited in asthmatic adults. We hypothesized that, when assessed under similar conditions, healthy infants have heightened airway reactivity compared with healthy adults and that the effectiveness of DI is limited in infants. We compared the effect of DI on reactivity by using full (DI) vs. partial (no DI) forced-expiratory maneuvers on 2 days in supine, healthy nonasthmatic infants (21) and adults (10). Reactivity was assessed by methacholine doses that decreased forced expiratory flow after exhalation of 75% forced vital capacity during a full maneuver and maximal expiratory flow at functional residual capacity during a partial maneuver by 30% from baseline. Reactivity in adults increased when DI was absent, whereas infants' reactivity was unchanged. Infants were more reactive than adults in the presence of DI; however, adult and infant reactivity was similar in its absence. Our findings indicate that healthy infants are more reactive than adults and, like asthmatic adults, do not benefit from DI; this difference may be an important characteristic of airway hyperreactivity.


1982 ◽  
Vol 29 (1) ◽  
pp. 30-36
Author(s):  
Song Hyun Nam ◽  
Hyun Ha Park ◽  
Re Hwe Kim ◽  
Sung Koo Han ◽  
Ye Won Kim ◽  
...  

1986 ◽  
Vol 60 (3) ◽  
pp. 1060-1066 ◽  
Author(s):  
R. G. Castile ◽  
O. F. Pedersen ◽  
J. M. Drazen ◽  
R. H. Ingram

The effect of carbachol-induced central bronchoconstriction on density dependence of maximal expiratory flow (MEF) was assessed in five dogs. MEFs were measured on air and an 80% He-20% O2 mixture before and after local application of carbachol to the trachea. Airway pressures were measured using a pitot-static probe, from which central airway areas were estimated. At lower concentrations of carbachol the flow-limiting site remained in the trachea over most of the vital capacity (VC), and tracheal area and compliance decreased in all five dogs. In four dogs, decreases in choke point area predominated and produced decreases in flows. In one dog the increase in airway “stiffness” apparently offset the fall in area to account for an increase in MEF. Density dependence measured as the ratio of MEF on HeO2 to MEF on air at 50% of VC increased in all five dogs. Increases in density dependence appeared to be related to increases in airway stiffness at the choke point rather than decreases in gas-related airway pressure differences. Lower concentrations produced a localized decrease in tracheal area and extended the plateau of the flow-volume curve to lower lung volumes. Higher concentrations caused further reductions in tracheal area and greater longitudinal extension of bronchoconstriction, resulting in upstream movement of the site of flow limitation at higher lung volumes. Density dependence increased if the flow-limiting sites remained in the trachea at mid-VC but fell if the flow-limiting site had moved upstream by that volume.


CHEST Journal ◽  
1992 ◽  
Vol 102 (5) ◽  
pp. 1636-1637
Author(s):  
Sema Umut ◽  
Bilun Gemicioğlu ◽  
Nurhayat Yildirim

1982 ◽  
Vol 53 (2) ◽  
pp. 392-396 ◽  
Author(s):  
J. W. Weiss ◽  
E. R. McFadden ◽  
R. H. Ingram

Using forced vital capacity maneuvers, we measured maximal expiratory flow rates (Vmax) and static elastic recoil pressures of the lung [Pst(L)] using quasi-static maneuvers in normal nonsmoking human subjects who were breathing air and after a washing of 80% helium-20% oxygen before and after both inhaled and intravenously administered atropine sulfate. By both routes there were equivalent increases in Vmaxair but different effects on density dependence (DD) of Vmax (DD = ratio of VmaxHeO2 to Vmaxair) and on Pst(L). At 30% of vital capacity, DD decreased from an average of 1.47 to 1.32 (P less than 0.01, paired t test) after inhaled drug and did not change after parenteral administration [1.44 vs. 1.48 (P greater than 0.2)]. After inhalation Pst(L) did not change, but after parenteral administration Pst(L) significantly decreased. We interpret these findings to indicate a predominantly large-airway effect with the inhalation route and a more uniform dilatation after the parenteral dose. These results contrast with beta-adrenergic dilatation following which small-airway effects predominate regardless of route of administration.


1978 ◽  
Vol 45 (2) ◽  
pp. 238-243 ◽  
Author(s):  
E. C. Deal ◽  
E. R. McFadden ◽  
R. H. Ingram ◽  
J. J. Jaeger

The role of vagal efferent activity in the cold air potentiation of exercise-induced asthma was assessed by exercising nine subjects who breathed air at ambient and subfreezing temperatures before and after cholinergic blockade. Lung volumes and maximal expiratory flow volume curves with air and with 80% helium-20% oxygen were obtained before and 5--10 min after each challenge. Isovolume comparisons of maximal expiratory flow rates with the two gases were used to assess relative contributions of large and small airways to flow limitation. Exercise under ambient conditions resulted in the expected airway obstruction and cold air exaggerated the response. Atropine pretreatment had no effect on the cold air potentiation. After atropine with ambient air exercise, there was an increase in the relative contribution of large airways to flow limitation, whereas exercise with cold air resulted in an increase in the contribution of small airways. We concluded that the potentiating effects of cold air are local and suggest that the immediate stimulus is related to cooling of intrathoracic airways.


Respiration ◽  
1982 ◽  
Vol 43 (4) ◽  
pp. 258-262 ◽  
Author(s):  
Angelo M. Taveira Da Silva ◽  
Paul Hamosh

Sign in / Sign up

Export Citation Format

Share Document