Lung volumes after antigen infusion in the guinea pig in vivo: effects of vagal section

1978 ◽  
Vol 45 (6) ◽  
pp. 957-961 ◽  
Author(s):  
J. M. Drazen ◽  
S. H. Loring ◽  
C. Venugopalan

The effects of intravenous antigen infusion on lung volumes and quasi-static deflationary pulmonary compliance in guinea pigs previously sensitized to ovalbumin were studied in vivo. Ovalbumin infusion significantly increased minimal gas volume to a similar extent in animals with intact or cut vagi. Total lung capacity fell only in animals with intact vagi. Quasi-static compliance fell in both groups of animals, but the fall was significantly greater in animals with intact vagi. These data demonstrate that immediate hypersensitivity reactions alter lung volumes and the elastic properties of the lung by both vagal dependent and vagal independent mechanisms.

1980 ◽  
Vol 49 (4) ◽  
pp. 558-565 ◽  
Author(s):  
N. Berend ◽  
C. Skoog ◽  
W. M. Thurlbeck

Static deflationary pressure-volume curves were obtained in 28 emphysema-free (18 male and 10 female) and 39 emphysematous excised human lungs inflated to a maximum transpulmonary pressure (Pl) of 30 cmH2O. In emphysema-free lungs, the lung volumes at Pl 30 cmH2O (V30) were significantly related to body length in males and were significantly larger than predicated total lung capacity in vivo. However, corrected for stature (V30/body length), there was no significant age correlation. In both males and females, highly significant correlations between the PL at 50--90% V30 and age were obtained. There were no significant differences in these regressions between males and females. The emphysematous lungs were divided into three groups with increasing emphysema grades. Progressive decreases in the PL at 50--90% V30 and increases in the V30 were seen in the groups with increasing degrees of emphysema. Significant changes occurred in these measurements even in group 2 with mild emphysema, suggesting that the lesions of emphysema are not directly responsible for these changes.


1994 ◽  
Vol 76 (2) ◽  
pp. 495-506 ◽  
Author(s):  
A. P. Gauthier ◽  
S. Verbanck ◽  
M. Estenne ◽  
C. Segebarth ◽  
P. T. Macklem ◽  
...  

The ability of the diaphragm to generate pressures at different lung volumes (VLs) in humans may be determined by the following factors: 1) its in vivo three-dimensional shape, radius of curvature, and tension according to Laplace law; 2) the relative degree to which it is apposed to the rib cage (i.e., zone of apposition) and lungs (i.e., diaphragm dome); and 3) its length-force properties. To gain more insight into these factors we have reconstructed from nuclear magnetic images the three-dimensional shape of the diaphragm of four normal subjects under supine relaxed conditions at four different VLs: residual volume, functional residual capacity, functional residual capacity plus one-half of the inspiratory capacity, and total lung capacity. Under our experimental conditions the shape of the diaphragm changes substantially in the anteroposterior plane but not in the coronal one. Multivariate regression analysis indicates that the zone of apposition is dependent on both diaphragm shortening and lower rib cage widening with lung inflation, although much more on the first of these two factors. Because of the changes in anteroposterior shape and expansion of the insertional origin at the costal margin with lung inflation, the data therefore suggest that the diaphragm may be more accurately modeled by a “widening piston” (Petroll's model) than a simple “piston in a cylinder” model. A significant portion of the muscular surface is lung apposed, suggesting that diaphragmatic force has radial vectors in the dome and vectors along the body axis in the zone of apposition. The muscular surface area of the diaphragm decreased linearly by approximately 41% with VL from residual volume to total lung capacity. Diaphragmatic fibers may shorten under physiological conditions more than any other skeletal muscle. The large changes in fiber length combined with limited shape changes with lung inflation suggest that the length-twitch force properties of the diaphragm may be the most important factor for the pressure-generating function of this respiratory muscle in response to bilateral phrenic shocks at different VLs.


PEDIATRICS ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 181-193
Author(s):  
C. D. Cook ◽  
P. J. Helliesen ◽  
L. Kulczycki ◽  
H. Barrie ◽  
L. Friedlander ◽  
...  

Tidal volume, respiratory rate and lung volumes have been measured in 64 patients with cystic fibrosis of the pancreas while lung compliance and resistance were measured in 42 of these. Serial studies of lung volumes were done in 43. Tidal volume was reduced and the respiratory rate increased only in the most severely ill patients. Excluding the three patients with lobectomies, residual volume and functional residual capacity were found to be significantly increased in 46 and 21%, respectively. These changes correlated well with the roentgenographic evaluation of emphysema. Vital capacity was significantly reduced in 34% while total lung capacity was, on the average, relatively unchanged. Seventy per cent of the 61 patients had a signficantly elevated RV/TLC ratio. Lung compliance was significantly reduced in only the most severely ill patients but resistance was significantly increased in 35% of the patients studied. The serial studies of lung volumes showed no consistent trends among the groups of patients in the period between studies. However, 10% of the surviving patients showed evidence of significant improvement while 15% deteriorated. [See Fig. 8. in Source Pdf.] Although there were individual discrepancies, there was a definite correlation between the clinical evaluation and tests of respiratory function, especially the changes in residual volume, the vital capacity, RV/ TLC ratio and the lung compliance and resistance.


2008 ◽  
Vol 105 (6) ◽  
pp. 1864-1872 ◽  
Author(s):  
Z. Hantos ◽  
Á. Adamicza ◽  
T. Z. Jánosi ◽  
M. V. Szabari ◽  
J. Tolnai ◽  
...  

Absolute lung volumes such as functional residual capacity, residual volume (RV), and total lung capacity (TLC) are used to characterize emphysema in patients, whereas in animal models of emphysema, the mechanical parameters are invariably obtained as a function of transrespiratory pressure (Prs). The aim of the present study was to establish a link between the mechanical parameters including tissue elastance (H) and airway resistance (Raw), and thoracic gas volume (TGV) in addition to Prs in a mouse model of emphysema. Using low-frequency forced oscillations during slow deep inflation, we tracked H and Raw as functions of TGV and Prs in normal mice and mice treated with porcine pancreatic elastase. The presence of emphysema was confirmed by morphometric analysis of histological slices. The treatment resulted in an increase in TGV by 51 and 44% and a decrease in H by 57 and 27%, respectively, at 0 and 20 cmH2O of Prs. The Raw did not differ between the groups at any value of Prs, but it was significantly higher in the treated mice at comparable TGV values. In further groups of mice, tracheal sounds were recorded during inflations from RV to TLC. All lung volumes but RV were significantly elevated in the treated mice, whereas the numbers and size distributions of inspiratory crackles were not different, suggesting that the airways were not affected by the elastase treatment. These findings emphasize the importance of absolute lung volumes and indicate that tissue destruction was not associated with airway dysfunction in this mouse model of emphysema.


Author(s):  
Ynuk Bossé

The deep inspiration (DI) maneuver entices a great deal of interest because of its ability to temporarily ease the flow of air into the lungs. This salutary effect of a DI is proposed to be mediated, at least partially, by momentarily increasing the operating length of airway smooth muscle (ASM). Concerningly, this premise is largely derived from a growing body of in vitro studies investigating the effect of stretching ASM by different magnitudes on its contractility. The relevance of these in vitro findings remains uncertain, as the real range of strains ASM undergoes in vivo during a DI is somewhat elusive. In order to understand the regulation of ASM contractility by a DI and to infer on its putative contribution to the bronchodilator effect of a DI, it is imperative that in vitro studies incorporate levels of strains that are physiologically relevant. This review summarizes the methods that may be used in vivo in humans to estimate the strain experienced by ASM during a DI from functional residual capacity (FRC) to total lung capacity (TLC). The strengths and limitations of each method, as well as the potential confounders, are also discussed. A rough estimated range of ASM strains is provided for the purpose of guiding future in vitro studies that aim at quantifying the regulatory effect of DI on ASM contractility. However, it is emphasized that, owing to the many limitations and confounders, more studies will be needed to reach conclusive statements.


1980 ◽  
Vol 48 (2) ◽  
pp. 389-393 ◽  
Author(s):  
G. Hayatdavoudi ◽  
J. D. Crapo ◽  
F. J. Miller ◽  
J. J. O'Neil

The total lung capacity (TLC) of rats was measured in vivo and was compared to the displacement volume of the lungs following intratracheal fixation with glutaraldehyde or formaldehyde solution. When glutaraldehyde was used the speed of infusion of the fixative was an important factor in the final degree of lung inflation achieved. With a low rate of fixative infusion and a final pressure of 20 cm of fixative the glutaraldehyde-fixed lungs inflated to 55% TLC. With a high initial flow of glutaraldehyde and a final pressure of 20 cm of fixative the lungs inflated to 84% TLC. Fixation of lungs inside the intact chest wall was found to result in a higher degree of inflation. With a reservoir height of 20 cm and a low rate of fixative infusion lungs fixed in situ reached 74% TLC, whereas lungs fixed in situ, but from animals that have been exsanguinated prior to fixation, inflated to only 58% TLC. This suggests that the volume of the blood in the lungs prior to infusion of glutaraldehyde influences the degree of inflation achieved. Formaldehyde-fixed lungs required 72 h to be completely fixed and they were inflated to 90% TLC when a reservoir height of 20 cm was used. Because of the slow rate of fixation using with formaldehyde solution the rate of infusion was found not to limit the degree of inflation that could be achieved.


1961 ◽  
Vol 16 (2) ◽  
pp. 331-338 ◽  
Author(s):  
C. Emirgil ◽  
H. O. Heinemann

Fifteen patients, free from cardiac and pulmonary disease, but receiving radiotherapy for carcinoma of the breast or carcinoma of the lung, were studied to determine the effect of irradiation on pulmonary function. Lung volumes, the distribution of inspired air, the levels of gases in the arterial blood, the diffusing capacity of the lung, and the mechanics of breathing were measured before and at varying intervals after the completion of radiotherapy. The results showed: early and progressive reduction of inspiratory capacity (IC) and residual volume (RV), decreasing the total lung capacity (TLC) without changing the RV/TLC ratio; unchanged distribution of inspired air; mild hypoxemia at rest; reduced diffusing capacity of the lung for carbon monoxide; and an early and progressive decrease in pulmonary compliance. These observations indicate that irradiation of the chest is complicated by a decrease in lung volumes, an impairment of the diffusing capacity, and an increase in the work of breathing. Submitted on September 6, 1960


2017 ◽  
Vol 126 (5) ◽  
pp. 834-841 ◽  
Author(s):  
Dominique Laroche ◽  
Pierre Léturgie ◽  
Delphine Mariotte ◽  
Yann Ollivier ◽  
Jean-Luc Hanouz ◽  
...  

Abstract Background Immediate hypersensitivity reactions occurring during anesthesia are classified as allergic when skin tests and mast cell tryptase are positive and as nonallergic when negative results are obtained. Cysteinyl leukotrienes (cysLTs) are potent mediators synthesized by mast cell and eosinophil that induce bronchial constriction. They could play a role in hypersensitivity reactions. Methods cysLT C4, D4, and E4 concentrations were measured by a competition immunoassay in serial plasma samples obtained prospectively from 21 anesthetized controls and retrospectively from 34 patients who reacted at induction of anesthesia (24 with allergic and 10 with nonallergic reactions). Results In controls, the median (interquartile range) cysLT concentration was 0.83 (0.69 to 1.02) μg/l before anesthesia and was unchanged 30 min, 6 h, and 24 h afterward. In the patients with allergic reactions, the values were highly increased 30 to 60 min after the reaction (17.9 [7.8 to 36.0] μg/l), while the patients with nonallergic reactions had less increased values (7.3 [3.0 to 11.5] μg/l). The difference between the three groups was significant (P < 0.0001). Increased values persisted during the 24 h of observation. Concentrations were significantly higher in patients with bronchospasm (P = 0.016). Conclusions cysLTs appear to be an important mediator of allergic and nonallergic immediate hypersensitivity reactions. These findings might open a new field for management of patients with hypersensitivity reactions, especially nonallergic ones.


1993 ◽  
Vol 36 (3) ◽  
pp. 516-520 ◽  
Author(s):  
Jeannette D. Hoit ◽  
Nancy Pearl Solomon ◽  
Thomas J. Hixon

This investigation was designed to test the hypothesis that voice onset time (VOT) varies as a function of lung volume. Recordings were made of five men as they repeated a phrase containing stressed /pi/ syllables, beginning at total lung capacity and ending at residual volume. VOT was found to be longer at high lung volumes and shorter at low lung volumes in most cases. This finding points out the need to take lung volume into account when using VOT as an index of laryngeal behavior in both healthy individuals and those with speech disorders.


Sign in / Sign up

Export Citation Format

Share Document