Augmentation of parasympathetic contraction in tracheal and bronchial airways by PGF2 alpha in situ

1985 ◽  
Vol 58 (5) ◽  
pp. 1558-1564 ◽  
Author(s):  
A. R. Leff ◽  
N. M. Munoz ◽  
J. Tallet ◽  
M. Cavigelli ◽  
A. C. David

We studied the effect of exogenous prostaglandin F2 alpha (PGF2 alpha) on airway smooth muscle contraction caused by parasympathetic stimulation in 22 mongrel dogs in situ. Voltage (0–30 V, constant 20 Hz) and frequency-response (0–25 Hz, 25 V) curves were generated by stimulating the cut ends of both cervical vagus nerves. Airway response was measured isometrically as active tension (AT) in a segment of cervical trachea and as change in airway resistance (RL) and dynamic compliance (Cdyn) in bronchial airways. One hour after 5 mg/kg iv indomethacin, a cumulative frequency-response curve was generated in nine animals by electrical stimulation of the vagus nerves at 15-s intervals. Reproducibility was demonstrated by generating a second curve 7 min later. A third frequency-response curve was generated during active contraction of the airway caused by continuous intravenous infusion of 10 micrograms X kg-1 X min-1PPGF2 alpha. Additional frequency-response studies were generated 15 and 30 min after PGF2 alpha, when airway contractile response (delta RL = +2.8 +/- 0.65 cmH2O X 1(-1) X s; delta Cdyn = -0.0259 +/- 0.007 1/cmH2O) returned to base line. Substantial augmentation of AT, RL, and Cdyn responses was demonstrated in every animal studied (P less than 0.01 for all points greater than 8 Hz) 15 min after PGF2 alpha. At 30 min, response did not differ from initial base-line control. In four animals receiving sham infusion, all frequency-response curves were identical. We demonstrate that PGF2 alpha augments the response to vagus nerve stimulation in tracheal and bronchial airways. Augmentation does not depend on PGF2 alpha-induced active tone.

1985 ◽  
Vol 58 (2) ◽  
pp. 625-634 ◽  
Author(s):  
W. C. Hulbert ◽  
T. McLean ◽  
B. Wiggs ◽  
P. D. Pare ◽  
J. C. Hogg

Histamine dose-response curves were performed on anesthetized tracheostomized guinea pigs that were paralyzed and mechanically ventilated at a constant tidal volume and breathing frequency. The dose was calculated by generating an aerosol of known concentration and measuring the volume delivered to the lung. Increasing the dose was accomplished by increasing the number of breaths of aerosol delivered. The response to each dose was determined by measuring the change in airway resistance (RL) and dynamic compliance (Cdyn) using the method of Von Neergaard and Wirz (Z. Klin. Med. 105: 51–82, 1927). With increasing doses of histamine, RL increased and reached a plateau at approximately five times the base-line value and Cdyn fell to approximately 20% of its initial value. The variability in the base-line and maximum response as well as the calculated sensitivity and reactivity was less than that previously reported. Propranolol pretreatment increased resting RL and shifted the dose-response curve for RL to the left of the controls, increasing reactivity but not sensitivity. Atropine shifted the dose-response curve to the right of the control, decreasing sensitivity but without changing reactivity. The data for Cdyn showed that atropine pretreatment caused a higher resting value and propranolol pretreatment a lower value at the highest histamine dose but no differences in either sensitivity or reactivity.


2013 ◽  
Vol 448-453 ◽  
pp. 2270-2273
Author(s):  
Xin Zhang ◽  
Xin Wang ◽  
Yi Hui Zheng ◽  
Li Xue Li ◽  
Li Dan Zhou ◽  
...  

In this paper, a novel method based on FRA is proposed to detect both the fault and the deformation type. Firstly, a model of the transformer winding is established based on the electrical properties of winding. Secondly, as the winding frequency response curve change in accordance with the change of the parameters of winding model, the rule of the variation of winding frequency response curve is drawn out based on the model above. Thirdly, the effect of various types of winding deformation on the changes of the parameters of transformer winding model is summarized. Finally, an experimental example of the diagnosis of deformation type is conducted on a testing transformer based on the analysis of frequency response curves, hence the validation of the correctness of the simulation results.


1989 ◽  
Vol 66 (2) ◽  
pp. 638-643 ◽  
Author(s):  
T. M. Murphy ◽  
N. M. Munoz ◽  
J. Moss ◽  
J. S. Blake ◽  
M. M. Mack ◽  
...  

We studied the secretory correlates of tracheal smooth muscle contraction caused by platelet-activating factor (PAF) in nine mongrel dogs in vivo. In five dogs, dose-response curves were generated by rapid intra-arterial injection of 10(-10) to 10(-6) mol PAF into the isolated tracheal circulation; tracheal contractile response was measured isometrically in situ. To examine the mechanism by which PAF elicits contraction of canine trachealis, concentrations of serotonin (5-HT) and histamine were assayed in the venous effluent as the arteriovenous difference (AVd) in mediator concentration across the airway for each level of contraction. PAF caused dose-related active tracheal tension to a maximum of 37.2 +/- 5.4 g/cm (10(-6) mol PAF). The AVd in 5-HT increased linearly from 0.20 +/- 0.05 (10(-9) mol PAF) to 3.5 +/- 0.3 ng/ml (10(-6) mol PAF) (P less than 0.005). In contrast, the AVd in histamine was insignificant and did not change with increasing doses of PAF. A positive correlation was obtained between the AVd in 5-HT and active tracheal tension (r = 0.92, P less than 0.001); there was no correlation between AVd in histamine and active tension (r = -0.16). PAF-induced parasympathetic activation was not mediated by 5-HT; contraction elicited by exogenous 5-HT was not affected by muscarinic blockade. We conclude that nonparasympathetically mediated contraction elicited acutely by PAF in dogs results at least in part from secondary release of serotonin and is not mediated by histamine.


1986 ◽  
Vol 108 (4) ◽  
pp. 368-371 ◽  
Author(s):  
Jium-Ming Lin ◽  
Kuang-Wei Han

In this brief note, the effects of model reduction on the stability boundaries of control systems with parameter variations, and the limit-cycle characteristics of nonlinear control systems are investigated. In order to reduce these effects, a method of model reduction is used which can approximate the original transfer function at S=0, S=∞, and also match some selected points on the frequency response curve of the original transfer function. Examples are given, and comparisons with the methods given in current literature are made.


1987 ◽  
Vol 63 (5) ◽  
pp. 2008-2014 ◽  
Author(s):  
T. M. Murphy ◽  
N. M. Munoz ◽  
C. A. Hirshman ◽  
J. S. Blake ◽  
A. R. Leff

The comparative effects of contractile agonists and physiological stimulation of the tracheal and bronchial smooth muscle (BSM) response were studied isometrically in situ in five Basenji-greyhound (BG) and six mongrel dogs. Frequency-response curves generated by bilateral stimulation of the vagus nerves (0–20 Hz, 15–20 V, 2-ms duration) elicited greater maximal contraction in mongrel trachea (36.8 +/- 8.1 vs. 26.9 +/- 4.0 g/cm; P less than 0.02) and exhibited greater responsiveness in mongrel BSM (half-maximal response to electrical stimulation 3.0 +/- 1.1 vs. 7.0 +/- 0.5 Hz; P less than 0.05) compared with BG dogs. However, muscarinic sensitivity to intravenous methacholine (MCh) was substantially greater in BG dogs; MCh caused contraction greater than 1.5 g/cm at a mean dose of 3.0 X 10(-10) mol/kg for BG dogs compared with 5.1 X 10(-9) mol/kg for mongrel controls (P less than 0.03, Mann-Whitney rank-sum test). In contrast to the muscarinic response, the contractile response elicited by intravenous norepinephrine after beta-adrenergic blockade was similar in trachea and bronchus for both mongrel and BG dogs. Our data confirm previous in vitro demonstration of tracheal hyporesponsiveness in BG dogs and demonstrate that the contraction resulting from efferent parasympathetic stimulation is less in the BG than mongrel dogs. However, postsynaptic muscarinic responsiveness of BG BSM is substantially increased. We conclude that a component of airway responsiveness in BG dogs depends directly on contractile forces generated postsynaptically that are nongeometry dependent, postjunctional, and agonist specific.


1983 ◽  
Vol 55 (1) ◽  
pp. 92-99 ◽  
Author(s):  
J. M. Hinson ◽  
A. A. Hutchison ◽  
M. L. Ogletree ◽  
K. L. Brigham ◽  
J. R. Snapper

To examine the role of circulating granulocytes in the airway changes caused by endotoxemia, we measured the response of chronically instrumented unanesthetized sheep to endotoxemia before and after granulocyte depletion with hydroxyurea. Granulocyte depletion did not affect the increases in mean pulmonary arterial pressure caused by endotoxin [peak pressure 59 +/- 8 cmH2O +/- (SE) control, 51 +/- 8 cmH2O granulocyte depleted]. However, the early (30-60 min after endotoxin) airway response to endotoxemia was markedly attenuated. Without granulocyte depletion, endotoxin caused dynamic compliance (Cdyn) to decrease to 41 +/- 10% of the base-line value and total lung resistance (RL) to increase to 283 +/- 61% of base line. When animals were granulocyte depleted, endotoxin decreased Cdyn to 69 +/- 6% (P less than 0.05) of base line and increased RL to 141 +/- 20% of base line (P less than 0.05). Granulocyte depletion also attenuated the effect of endotoxin on arterial oxygenation. During the maximum airway response to endotoxin, the alveolar-to-arterial oxygen gradient was 47 +/- 5 Torr in control studies and 32 +/- 2 Torr in granulocyte depleted studies (P less than 0.05). We conclude that interaction of granulocytes with the lung contributes to the changes in lung mechanics observed following endotoxemia and that the early pulmonary hypertension and the early alterations in lung mechanics caused by endotoxemia are caused by separate processes.


2018 ◽  
Vol 7 (3.4) ◽  
pp. 143
Author(s):  
Omer Muwafaq Mohmmed Ali ◽  
Rawaa Hamid Mohammed Al-Kalali ◽  
Ethar Mohamed Mahdi Mubarak

In this paper, laminated composite materials were hybridized with fibers (E-glass) and shape memory alloy wires which considered a smart material. The effect of changing frequency on the (acceleration- frequency) response curve, the damping ratio of the vibration modes, the natural frequencies of the vibration mode, the effect of shape memory alloy wires number on the damping characteristics were studied. Hand lay-up technique was used to prepare the specimens, epoxy resin type was used as a matrix reinforced by fiber, E-glass. The specimens were manufactured by stacking 2 layers of fibers. Shape memory alloy, type Nitinol (nickel-titanium) having a diameter (1 and 2mm), was used to manufacture the specimens by embedding (1,2 and 3) wires into epoxy. Experimentally, the acceleration- frequency response curve was plotted for the vibration modes, this curve was used to measure the natural frequencies of the vibration modes and calculate the damping ratio of the vibration modes. ANSYS 15- APDL was used to determine the mode shape and find the natural frequencies of the vibration modes then compared with the experimental results. The results illustrated that, for all specimens increasing the natural frequency leads to decreasing the damping ratio. Increasing the number of shape memory alloy wires leads to increase the values of the damping ratio of the vibration modes and the natural frequencies of the vibration modes at room temperature. 


Sign in / Sign up

Export Citation Format

Share Document