Role of microtubules in surfactant secretion

1985 ◽  
Vol 58 (6) ◽  
pp. 1866-1873 ◽  
Author(s):  
L. A. Brown ◽  
S. M. Pasquale ◽  
W. J. Longmore

In the isolated perfused rat lung and cultured type II cells, surfactant secretion and cellular adenosine 3′,5′-cyclic monophosphate (cAMP) content was stimulated by beta-adrenergic agonists. Isoproterenol-induced surfactant secretion was inhibited by the antimicrotubule agents colchicine and vinblastine. Incorporation of [3H]glycerol into disaturated phosphatidylcholine was augmented by beta-adrenergic agents but was not significantly different from the enhanced incorporation rate when colchicine was present. This suggests that the augmented incorporation of [3H]glycerol into disaturated phosphatidylcholine was a secondary response to storage depletion rather than direct cAMP stimulation. beta-Adrenergic agents shifted the equilibrium in the isolated perfused rat lung and cultured type II cells to favor microtubules. The stimulatory effect of 1.0 microM isoproterenol on tubulin polymerization was observed as early as 1 min and was augmented 2.8-fold at a half-maximal stimulation of 4 nM in cultured type II cells. Cytochalasin B, an antimicrofilament agent, potentiated the isoproterenol-induced secretion. These results suggest that an intact microtubule-microfilament system may be obligatory for enhanced surfactant secretion and that beta-adrenergic agents not only induce surfactant release but also tubulin polymerization.

1999 ◽  
Vol 276 (3) ◽  
pp. L452-L458 ◽  
Author(s):  
Howard Clark ◽  
Lennell Allen ◽  
Erin Collins ◽  
Frederick Barr ◽  
Leland Dobbs ◽  
...  

Pulmonary surfactant exists in the alveolus in several distinct subtypes that differ in their morphology, composition, and surface activity. Experiments by others have implicated a serine hydrolase in the production of the inactive small vesicular subtype of surfactant (N. J. Gross and R. M. Schultz. Biochim. Biophys. Acta 1044: 222–230, 1990). Our laboratory recently identified this enzyme in the rat as the serine carboxylesterase ES-2 [F. Barr, H. Clark, and S. Hawgood. Am. J. Physiol. 274 ( Lung Cell. Mol. Physiol. 18): L404–L410, 1998]. In the present study, we determined the cellular sites of expression of ES-2 in rat lung using a digoxygenin-labeled ES-2 riboprobe. ES-2 mRNA was localized to type II cells and alveolar macrophages but not to Clara cells. Using a specific ES-2 antibody, we determined the protein distribution of ES-2 in the lung by immunohistochemistry, and it was found to be consistent with the sites of mRNA expression. Most of the ES-2 in rat bronchoalveolar lavage is in the surfactant-depleted supernatant, but ES-2 was also consistently localized to the small vesicular surfactant subfraction presumed to form as a consequence of conversion activity. These results are consistent with a role for endogenous lung ES-2 in surfactant metabolism.


1994 ◽  
Vol 266 (4) ◽  
pp. L375-L381 ◽  
Author(s):  
M. S. Pian ◽  
L. G. Dobbs

To investigate how G proteins regulate surfactant secretion, we subjected rat alveolar type II cells to conditions known to activate or to inactivate G proteins. AlF-4, which activates G proteins, inhibited secretion in intact cells. Guanosine-5'-O-(3-thiotriphosphate), which activates G proteins in permeabilized cells, stimulated secretion at basal cytosolic [Ca2+], but inhibited secretion at higher [Ca2+]. In contrast, guanosine-5'-O-(2-thiodiphosphate) (GDP beta S), which inactivates G proteins, stimulated secretion at each [Ca2+] tested. Because treatment with GDP beta S stimulated secretion at basal cytosolic [Ca2+], surfactant secretion appears to be subject to G protein-regulated tonic inhibition. Pertussis toxin (PTX) inhibited terbutaline- and ionomycin-stimulated secretion in intact cells, but did not inhibit secretion stimulated by either forskolin or 8-bromoadenosine 3',5'-cyclic monophosphate. Inhibition by PTX of terbutaline-stimulated, but not 8-bromoadenosine 3',5'-cyclic monophosphate- or forskolin-stimulated secretion, suggests that PTX-sensitive G proteins regulate beta-adrenergic-stimulated surfactant secretion proximal to second messenger generation. Inhibition of ionomycin-stimulated secretion, however, suggests that PTX-sensitive G proteins may also regulate non-receptor-mediated secretory events.


1987 ◽  
Vol 241 (1) ◽  
pp. 291-296 ◽  
Author(s):  
M Post

Administration of dexamethasone to pregnant rats at 19 days gestation increased phosphatidylcholine synthesis (45%) from radioactive choline in type II cells. This enhanced synthesis of phosphatidylcholine was accompanied by an increased conversion of choline phosphate into CDP-choline. Similar results were obtained by incubating organotypic cultures of 19-day-fetal rat lung with cortisol. The increased conversion of choline phosphate into CDP-choline correlated with an enhanced choline-phosphate cytidylyltransferase activity (31% after dexamethasone treatment; 47% after cortisol exposure) in the cell homogenates. A similar increase (26% after dexamethasone treatment; 39% after cortisol exposure) was found in the microsomal-associated enzyme. No differences in cytosolic enzyme activity were observed. The specific activity of the microsomal enzyme was 3-4 times that of the cytosolic enzyme. Most of the enzyme activity was located in the microsomal fraction (58-65%). The treatments had no effect on the total amount of enzyme recovered from the cell homogenates. These results, taken collectively, are interpreted to indicate that the active form of cytidylyltransferase in type II cells is the membrane-bound enzyme and that cytidylyltransferase activation in type II cells from fetal rat lung after maternal glucocorticoid administration occurs by binding of inactive cytosolic enzyme to endoplasmic reticulum.


1984 ◽  
Vol 18 ◽  
pp. 391A-391A ◽  
Author(s):  
Jacob N Finkelstein ◽  
Richard L Gallo ◽  
Robert H Notter ◽  
Donald L Shapiro

1991 ◽  
Vol 261 (4) ◽  
pp. L105-L109
Author(s):  
T. A. Voyno-Yasenetskaya ◽  
L. G. Dobbs ◽  
M. C. Williams

Several different classes of agonists are known to stimulate exocytosis in type II cells. These agonists cause increases in second messengers, such as adenosine 3',5'-cyclic monophosphate (cAMP) or cytosolic Ca2+, and/or stimulate protein kinase C. We studied generation of cAMP and phosphoinositide (PI) turnover in monolayer cultures of type II cells and measured [Ca2+]i in single cultured cells. ATP [10-4 M], which stimulates secretion of phosphatidylcholine (PC) and increases cellular cAMP, also stimulated PI turnover and increased [Ca2+]i. 12-O-tetradecanoylphorbol-13-acetate (TPA), which stimulates PC secretion and activates protein kinase C, did not increase [Ca2+]i. Pretreatment of type II cells with the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibited the PC secretion induced by ATP and TPA and blocked the increase in PI turnover caused by ATP. ATP-dependent surfactant secretion and stimulation of PI turnover could also be inhibited by pretreatment of the cells with pertussis toxin. We used the fluorescent probe indo-1 to measure [Ca2+]i in single cultured type II cells. ATP produced rapid transient increases in [Ca2+]i, which could be prevented by pretreatment of the cells with either TPA or W-7. Our data suggest that pertussis toxin-sensitive G protein(s) are involved in ATP-dependent activation of PI turnover and in secretion of surfactant in type II cells. Activation of protein kinase C blocks the ATP-stimulated increase in [Ca2+]i. Finally, calmodulin may be involved in the regulation of ATP-dependent increase in [Ca2+]i, the activation of PI turnover, and the secretion of surfactant in type II cells. lung; exocytosis; cell calcium; G proteins; phosphoinositide turnover


2020 ◽  
Vol 34 (9) ◽  
pp. 12785-12804 ◽  
Author(s):  
Kathrin Diem ◽  
Michael Fauler ◽  
Giorgio Fois ◽  
Andreas Hellmann ◽  
Natalie Winokurow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document