Regional pulmonary blood flow during 96 hours of hypoxia in conscious sheep

1986 ◽  
Vol 61 (6) ◽  
pp. 2136-2143 ◽  
Author(s):  
D. C. Curran-Everett ◽  
K. McAndrews ◽  
J. A. Krasney

The effects of acute hypoxia on regional pulmonary perfusion have been studied previously in anesthetized, artificially ventilated sheep (J. Appl. Physiol. 56: 338–342, 1984). That study indicated that a rise in pulmonary arterial pressure was associated with a shift of pulmonary blood flow toward dorsal (nondependent) areas of the lung. This study examined the relationship between the pulmonary arterial pressor response and regional pulmonary blood flow in five conscious, standing ewes during 96 h of normobaric hypoxia. The sheep were made hypoxic by N2 dilution in an environmental chamber [arterial O2 tension (PaO2) = 37–42 Torr, arterial CO2 tension (PaCO2) = 25–30 Torr]. Regional pulmonary blood flow was calculated by injecting 15-micron radiolabeled microspheres into the superior vena cava during normoxia and at 24-h intervals of hypoxia. Pulmonary arterial pressure increased from 12 Torr during normoxia to 19–22 Torr throughout hypoxia (alpha less than 0.049). Pulmonary blood flow, expressed as %QCO or ml X min-1 X g-1, did not shift among dorsal and ventral regions during hypoxia (alpha greater than 0.25); nor were there interlobar shifts of blood flow (alpha greater than 0.10). These data suggest that conscious, standing sheep do not demonstrate a shift in pulmonary blood flow during 96 h of normobaric hypoxia even though pulmonary arterial pressure rises 7–10 Torr. We question whether global hypoxic pulmonary vasoconstriction is, by itself, beneficial to the sheep.

1975 ◽  
Vol 38 (3) ◽  
pp. 495-498 ◽  
Author(s):  
D. H. Will ◽  
J. L. Hicks ◽  
C. S. Card ◽  
J. T. Reeves ◽  
A. F. Alexander

We investigated acute and chronic hypoxic pulmonary pressor responses in two groups of calves, one bred to be susceptible, the other resistant to high-altitude pulmonary hypertension. Twelve 5-mo-old susceptible calves residing at 1,524 m increased their mean pulmonary arterial pressure from 26 +/- 2 (SE) to 55 +/- 4 mmHg during 2 h at a simulated altitude of 4,572 m. In 10 resistant calves pressure increased from 22 +/- 1 to 37 +/- 2 mmHg. Five calves were selected from each group for further study. When 9 mo old, the 5 susceptible calves again showed a greater pressor response to acute hypoxia (27 +/- 1 to 55 +/- 4 mmHg) than did 5 resistant calves (23 +/- 1 to 41 +/- 3 mmHg). When 12 mo old, the 5 susceptible calves also developed a greater increase in pulmonary arterial pressure (21 +/- 2 to 9 +/- 4 mmHg) during 18 days at 4,572 m than did the 5 resistant calves (21 +/- 1 to 64 +/- 4 mmHg). Acute and chronic hypoxic pulmonary pressor responses were highly correlated (r = 0.91; P less than 0.001) indicating that they were probably produced through a common mechanism.


1977 ◽  
Vol 55 (6) ◽  
pp. 1369-1377 ◽  
Author(s):  
Philip J. Kadowitz ◽  
Ernst W. Spannhake ◽  
Stan Greenberg ◽  
Larry P. Feigen ◽  
Albert L. Hyman

The effects of bolus injections of the postaglandin precursor, arachidonic acid, and PGD2, PGF2α, PGE2, and the PGH2 analog ((15S)-hydroxyl-9α,11α(epoxymethano)-prosta-5Z-dienoic acid) were compared on the pulmonary circulation in the intact spontaneously breathing pentobarbital-anesthetized dog. Arachidonic acid increased pulmonary arterial pressure, decreased aortic pressure, and increased cardiac output when injected into the superior vena cava or right atrium. PGE2, like arachidonic acid, increased pulmonary arterial pressure and cardiac output and decreased aortic pressure, whereas PGF2α and PGD2 increased pulmonary arterial pressure but did not affect cardiac output or aortic pressure when injected into the superior vena cava or right atrium. The PGH2 analog increased pulmonary arterial pressure and to a lesser extent, aortic pressure, without affecting cardiac output. None of these substances changed left atrial or right atrial pressure. The cardiopulmonary effects of arachidonic acid were blocked by indomethacin whereas the rise in pulmonary arterial pressure in response to the bisenoic prostaglandins and the analog were enhanced by the cyclooxygenase inhibitor. These data suggest that the increase in pulmonary vascular resistance in response to arachidonic acid may be due to conversion of the precursor into vasoactive intermediates and products such as bisenoic prostaglandins whereas the decrease in systemic vascular resistance is probably due to the formation of PGE2 and other peripheral vasodilator substances.


1960 ◽  
Vol 198 (5) ◽  
pp. 1032-1036 ◽  
Author(s):  
Domingo M. Aviado

In anesthetized dogs, the inhalation of 5% oxygen causes a rise in pulmonary arterial pressure but no rise in venular pressures measured by catheters with outside diameters of 0.4 mm and 1.0 mm. The venular pressure measured by the 0.4-mm catheter showed a consistent rise to 5-hydroxytryptamine. This venular constrictor response to 5-hydroxytryptamine is encountered even when pulmonary blood flow is kept constant by perfusion. The venular response to histamine is variable.


1983 ◽  
Vol 54 (1) ◽  
pp. 225-233 ◽  
Author(s):  
H. Maeda ◽  
H. Itoh ◽  
Y. Ishii ◽  
G. Todo ◽  
T. Mukai ◽  
...  

Distributions of pulmonary blood flow per unit lung volume were measured with subjects in the prone, supine, and sitting positions by means of radionuclide-computed tomography of intravenously administered 99mTc-labeled macroaggregates of human serum albumin. The blood flow was greater in the direction of gravity in all 31 subjects except one with severe mitral valve stenosis. With the subject in a sitting position, four different types of distribution were distinguished. One type had a three-zonal blood flow distribution as previously reported by West and co-workers (J. Appl. Physiol. 19: 713–724, 1964). Pulmonary arterial pressure and venous pressure estimated from this model showed reasonable agreement with pulmonary arterial pressure and capillary wedge pressure measured by Swan-Ganz catheter in 17 supine patients and in 2 sitting patients. The method makes possible noninvasive assessment of pulmonary vascular pressures.


1965 ◽  
Vol 209 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Ricardo Ferretti ◽  
Neil S. Cherniack ◽  
Guy Longobardo ◽  
O. Robert Levine ◽  
Eugene Morkin ◽  
...  

Rhythmic oscillations in systemic arterial blood pressure (Mayer waves) were produced in the dog by metabolic acidosis; hypoxia generally augmented the amplitude of the Mayer waves. When the Mayer waves exceeded 20 mm Hg in amplitude, they were associated with rhythmic fluctuations in pulmonary arterial pressure. The pulmonary arterial waves resembled the Mayer waves with respect to frequency and independence of the breathing pattern but were generally smaller in amplitude Measurements of instantaneous pulmonary arterial blood flow indicate that the rhythmic fluctuations in pulmonary arterial pressure represent the passive effects of fluctuations in pulmonary blood flow rather than fluctuations in pulmonary vasomotor activity. In turn, the swings in pulmonary arterial blood flow appear to originate in rhythmic variations in systemic vasomotor activity.


1979 ◽  
Vol 46 (1) ◽  
pp. 184-188 ◽  
Author(s):  
L. G. Moore ◽  
J. T. Reeves ◽  
D. H. Will ◽  
R. F. Grover

Observations in several species suggest that pulmonary vascular reactivity may be reduced during pregnancy. We tested this hypothesis in two groups of unanesthetized cows, one “susceptible” and one “resistant” to high mountain or brisket disease. At the altitude of residence (1,524 m), mean pulmonary arterial pressure was elevated during pregnancy by 18% and total pulmonary vascular resistance by 32% in susceptible but not in resistant cows. During acute exposure to simulated altitudes of 2,120--4,550 m, pulmonary arterial pressure was increased by 16% and total pulmonary resistance by 28% during pregnancy in susceptible cows. The pulmonary pressor response to a 5 microgram/kg bolus of prostaglandin FIalpha was not different during pregnancy in either group. Resistant cows hyperventilated while pregnant, raising arterial partial pressure of oxygen (PaO2) by 6 Torr both at 1,524 m and, on the average, by 7 Torr at altitudes of 2,120--4,550 m. Susceptible cows increased their PaO2 less than did the resistant cows during pregnancy. The results indicated that pregnancy was associated with a greater rise in pulmonary arterial pressure and total pulmonary vascular resistance during acute hypoxia and failed to elicit as great a ventilatory response in susceptible than in resistant cows.


1987 ◽  
Vol 63 (3) ◽  
pp. 982-987 ◽  
Author(s):  
M. Cutaia ◽  
P. Friedrich

Past work in the isolated perfused cat lung has shown that acute hypoxia (H) changes the response to norepinephrine (NE) from vasoconstriction to vasodilation but has no effect on the response to serotonin (S). These results could be related to the increase in pulmonary arterial pressure or vascular resistance during the hypoxic pressor response or a direct effect of H. We addressed this question, in the same preparation, by comparing responses to NE under four conditions in each experimental animal (n = 12): 1) NE infused during normoxia; 2) NE infused after vascular resistance (Rpv) was increased with serotonin; 3) NE infused after Rpv was increased by H; 4) NE infused after lobar pressure was raised by an increase in flow (P/F). PO2 values during H were varied (27–56 Torr). S and H produced a 137 +/- 35 and 43 +/- 8% delta Rpv increase in lobar vascular resistance, respectively. P/F increased lobar pressure 91 +/- 10%. Only NE infusion during H demonstrated significant differences in lobar pressure and Rpv compared with control normoxic periods. There was no correlation between responses to NE during S, H, and P/F and degree to which each stimulus increased Rpv or lobar pressure (r = 0.003, 0.28, 0.24). A significant relationship between response to NE during H vs. PO2 during H was observed (r = 0.78; P less than 0.001). In a subset of animals, we repeated the infusion of NE during H and P/F post-beta-blockade. The decrease in vascular response to NE during H and the correlation of PO2 with NE response were abolished (n = 7).(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 73 (1) ◽  
pp. 213-218 ◽  
Author(s):  
F. C. Morin ◽  
E. A. Egan

During the latter third of gestation, the number of resistance vessels in the lungs of the fetal sheep increases by 10-fold even after correction for lung growth. We measured pulmonary arterial pressure and blood flow directly and calculated total pulmonary resistance (pressure divided by flow) in intrauterine fetal lambs at 93–95 days and at 136 days of gestation (term is 145–148 days). In addition, we used a hyperbaric chamber to increase oxygen tension in the fetuses and measured the effect on the pulmonary circulation. When corrected for wet weight of the lungs, pulmonary blood flow did not change with advancing gestation (139 +/- 42 to 103 +/- 45 ml.100 g-1.min-1). Pulmonary arterial pressure increased (42 +/- 5 to 49 +/- 3 mmHg); thus total pulmonary resistance increased with advancing gestation from 0.32 +/- 0.12 to 0.55 +/- 0.21 mmHg.100 g.min.ml-1. If the blood flow is corrected for dry weight of the lungs, neither pulmonary blood flow nor total pulmonary resistance changed with advancing gestation. Increasing oxygen tension increased pulmonary blood flow 10-fold in the more mature fetuses but only 0.2-fold in the less mature fetuses. At the normal low oxygen tension of the fetus, pulmonary blood flow does not increase between these two points of gestation in the fetal lamb despite the increase in vessel density in the lungs. However, during elevated oxygen tension, pulmonary blood flow does increase in proportion to the increase in vessel density.


Sign in / Sign up

Export Citation Format

Share Document