capillary pressures
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 17)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ahmed Ghamdi ◽  
Abubakar Isah ◽  
Mahmoud Elsayed ◽  
Kareem Garadi ◽  
Abdulazeez Abdulraheem

Abstract Measurement of Special Core Analysis (SCAL) parameters is a costly and time-intensive process. Some of the disadvantages of the current techniques are that they are not performed in-situ, and can destroy the core plugs, e.g., mercury injection capillary pressure (MICP). The objective of this paper is to introduce and investigate the emerging techniques in measuring SCAL parameters using Nuclear Magnetic Resonance (NMR) and Artificial Intelligence (Al). The conventional methods for measuring SCAL parameters are well understood and are an industry standard. Yet, NMR and Al - which are revolutionizing the way petroleum engineers and scientists describe rock/fluid properties - have yet to be utilized to their full potential in reservoir description. In addition, integration of the two tools will open a greater opportunity in the field of reservoir description, where measurement of in-situ SCAL parameters could be achieved. This paper shows the results of NMR lab experiments and Al analytics for measuring capillary pressures and permeability. The data set was divided into 70% for training and 30% for validation. Artificial Neural Network (ANN) was used and the developed model compared well with the permeability and capillary pressure data measured from the conventional methods. Specifically, the model predicted permeability 10% error. Similarly, for the capillary pressures, the model was able to achieve an excellent match. This active research area of prediction of capillary pressure, permeability and other rock properties is a promising emerging technique that capitalizes on NMR/AI analytics. There is significant potential is being able to evaluate wettability in-situ. Core-plugs undergoing Amott-Harvey experiment with NMR measurements in the process can be used as a building block for an NMR/AI wettability determination technique. This potential aspect of NMR/AI analytics can have significant implications on field development and EOR projects The developed NMR-Al model is an excellent start to measure permeability and capillary pressure in-situ. This novel approach coupled with ongoing research for better handling of in-situ wettability measurement will provide the industry with enormous insight into the in-situ SCAL measurements which are currently considered as an elusive measurement with no robust logging technique to evaluate them in-situ.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7832
Author(s):  
Tianqi Zhou ◽  
Chaodong Wu ◽  
Xutong Guan ◽  
Jialin Wang ◽  
Wen Zhu ◽  
...  

Deeply buried sandstones in the Jurassic, Toutunhe Formation, are a crucial exploration target in the Junggar Basin, NW China, whereas, reservoir-forming process of sandstones in the Toutunhe Formation remain unknown. Focused on the tight sandstone of the Toutunhe Formation, the impacts of diagenesis and hydrocarbon charging on sandstone reservoir-forming process were clarified based on the comprehensive analysis of sedimentary characteristics, petrography, petrophysical characteristics, and fluid inclusion analysis. Three diagenetic facies developed in the Toutunhe sandstone reservoirs, including carbonate cemented facies (CCF), matrix-caused tightly compacted facies (MTCF), and weakly diagenetic reformed facies (WDF). Except the WDF, the CCF and the MTCF entered the tight state in 18 Ma and 9 Ma, respectively. There was only one hydrocarbon emplacing event in sandstone reservoir of the Toutunhe Formation, charging in 13 Ma to 8 Ma. Meanwhile, the source rock started to expel hydrocarbons and buoyancy drove the hydrocarbon via the Aika fault belt to migrate into sandstone reservoirs in the Toutunhe Formation. During the end of the Neogene, the paleo-oil reservoir in the Toutunhe Formation was destructed and hydrocarbons migrated to the sandstone reservoirs in the Ziniquanzi Formation; some paleo-oil reservoirs survived in the WDF. The burial pattern and change of reservoir wettability were major controlling factors of the sandstone reservoir-forming process. The buried pattern of the Toutunhe Formation in the western section of the southern Junggar Basin was “slow and shallow burial at early stage and rapid and deep burial at late stage”. Hence, pore capillary pressure was extremely low due to limited diagenetic reformation (average pore capillary pressures were 0.26 MPa). At the same time, high content of chlorite coating increased the lipophilicity of reservoirs. Therefore, hydrocarbons preferably charged into the WDF with low matrix content (average 4.09%), high content of detrital quartz (average 28.75%), high content of chlorite films (average 2.2%), and lower pore capillary pressures (average 0.03 MPa). The above conditions were favorable for oil and gas enrichment.


2021 ◽  
Vol 83 (11) ◽  
Author(s):  
Samuel J. Mitchell ◽  
Kristen E. Fauria ◽  
Bruce F. Houghton ◽  
Rebecca J. Carey

AbstractSilicic submarine volcanic eruptions can produce large volumes of pumices that may rise buoyantly to the ocean surface and/or sink to the seafloor. For eruptions that release significant volumes of pumice into rafts, the proximal to medial submarine geologic record is thus depleted in large volumes of pumice that would have sedimented closer to source in any subaerial eruption. The 2012 eruption of Havre volcano, a submarine volcano in the Kermadec Arc, presents a unique opportunity to study the partitioning of well-constrained rafted and seafloor pumice. Macro- and microtextural analysis was performed on clasts from the Havre pumice raft and from coeval pumiceous seafloor units around the Havre caldera. The raft and seafloor clasts have indistinguishable macrotextures, componentry, and vesicularity ranges. Microtextural differences are apparent as raft pumices have higher vesicle number densities (109 cm−3 vs. 108 cm−3) and significantly lower pore space connectivity (0.3–0.95 vs. 0.9–1.0) than seafloor pumices. Porosity analysis shows that high vesicularity raft pumices required trapping of gas in the connected porosity to remain afloat, whereas lower vesicularity raft pumices could float just from gas within isolated porosity. Measurements of minimum vesicle throat openings further show that raft pumices have a larger proportion of small vesicle throats than seafloor pumices. Narrow throats increase gas trapping as a result of higher capillary pressures acting over gas–water interfaces between vesicles and lower capillary number inhibiting gas bubble escape. Differences in isolated porosity and pore throat distribution ultimately control whether pumices sink or float and thus whether pumice deposits are preserved or not on the seafloor.


2021 ◽  
Author(s):  
Ivan Yakimchuk ◽  
Dmitry Korobkov ◽  
Vera Pletneva ◽  
Olga Ridzel ◽  
Igor Varfolomeev ◽  
...  

Abstract The work demonstrates results of reservoir properties evaluation using a complex of laboratory and multiscale digital core or digital rock analysis. Rock properties (including relative phase permeabilities) were studied at different scales: from nanometers to meter (whole core). For the first time, cores from Turonian formation were characterized with digital rock analysis, which provided stationary relative permeabilities for gas-water under reservoir conditions. Lab determination of relative permeabilities was rather challenging for some low-permeability samples (<0.02 md), while digital analysis was successful even for them. Gas recovery in a depletion mode from different rock types was studied on a whole core model for different capillary pressures. Such studies are not conducted in the lab.


2021 ◽  
pp. 61-72
Author(s):  
I. G. Sabanina ◽  
T. V. Semenova ◽  
Yu. Ya. Bolshakov ◽  
S. V. Vorobjeva

Currently, most of the oil fields in the West Siberian oil and gas province are in the final stage of development. There is water-cut in production, a decrease in oil production, and the structure of residual reserves deteriorates. The search and application of the most successful scientific methods and technologies for improving oil recovery in the development of fields is quite an urgent task.It should be taken into account that hydrophobic reservoirs are common in the oil fields of Western Siberia, and when applying the method of reservoir flooding, this fact should be taken into account and a more detailed approach should be taken to the study of capillary forces to prevent flooding of productive objects. Despite the good knowledge of the West Siberian megabasin, some fundamental issues of its structure and oil and gas potential remain debatable.The article proposes methods for improving oil recovery of the BS10 formation of the Ust-Balykskoye oil field based on the study of capillary pressures in productive reservoir formations, and provides recommendations for the placement of injection wells. The study of the capillary properties of reservoir rocks will significantly improve the efficiency of exploration and field operations in oil fields.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahmed M. Selem ◽  
Nicolas Agenet ◽  
Ying Gao ◽  
Ali Q. Raeini ◽  
Martin J. Blunt ◽  
...  

AbstractX-ray micro-tomography combined with a high-pressure high-temperature flow apparatus and advanced image analysis techniques were used to image and study fluid distribution, wetting states and oil recovery during low salinity waterflooding (LSW) in a complex carbonate rock at subsurface conditions. The sample, aged with crude oil, was flooded with low salinity brine with a series of increasing flow rates, eventually recovering 85% of the oil initially in place in the resolved porosity. The pore and throat occupancy analysis revealed a change in fluid distribution in the pore space for different injection rates. Low salinity brine initially invaded large pores, consistent with displacement in an oil-wet rock. However, as more brine was injected, a redistribution of fluids was observed; smaller pores and throats were invaded by brine and the displaced oil moved into larger pore elements. Furthermore, in situ contact angles and curvatures of oil–brine interfaces were measured to characterize wettability changes within the pore space and calculate capillary pressure. Contact angles, mean curvatures and capillary pressures all showed a shift from weakly oil-wet towards a mixed-wet state as more pore volumes of low salinity brine were injected into the sample. Overall, this study establishes a methodology to characterize and quantify wettability changes at the pore scale which appears to be the dominant mechanism for oil recovery by LSW.


Author(s):  
Sajjad Foroughi ◽  
Branko Bijeljic ◽  
Martin J. Blunt

AbstractWe predict waterflood displacement on a pore-by-pore basis using pore network modelling. The pore structure is captured by a high-resolution image. We then use an energy balance applied to images of the displacement to assign an average contact angle, and then modify the local pore-scale contact angles in the model about this mean to match the observed displacement sequence. Two waterflooding experiments on oil-wet rocks are analysed where the displacement sequence was imaged using time-resolved synchrotron imaging. In both cases the capillary pressure in the model matches the experimentally obtained values derived from the measured interfacial curvature. We then predict relative permeability for the full saturation range. Using the optimised contact angles distributed randomly in space has little effect on the predicted capillary pressures and relative permeabilities, indicating that spatial correlation in wettability is not significant in these oil-wet samples. The calibrated model can be used to predict properties outside the range of conditions considered in the experiment.


SPE Journal ◽  
2021 ◽  
Vol 26 (02) ◽  
pp. 940-958
Author(s):  
Saeid Khorsandi ◽  
Liwei Li ◽  
Russell T. Johns

Summary Current relative permeability models rely on labeling a phase as “oil” and “gas” and cannot therefore capture accurately the effect of compositional variations on relative permeabilities and capillary pressures in enhanced oil recovery processes. Discontinuities in flux calculations caused by phase labeling problems not only cause serious convergence and stability problems but also affect the estimated recovery factor owing to incorrect phase mobilities. We developed a fully compositional simulation model using an equation of state (EoS) for relative permeabilities (kr) to eliminate the unphysical discontinuities in flux functions caused by phase labeling issues. The model can capture complex compositional and hysteresis effects for three-phase relative permeability. Each phase is modeled separately based on physical inputs that, in part, are proxies to composition. Phase flux calculations from one gridblock to another are also updated without phase labels. The tuned kr-EoS model and updated compositional simulator are demonstrated for simple ternary cases, multicycle three-phase water-alternating-gas (WAG) injection, and three-hydrocarbon-phase displacement with complex heterogeneity. The approach improves the initial estimates and convergence of flash calculations and stability analyses, as well as the convergence in the pressure solvers. The new compositional simulator allows for high-resolution simulation that gives improved accuracy in recovery estimates at significantly reduced computational time.


Author(s):  
Lukas M. Keller

The 3D reconstruction of the pore space in Opalinus Clay is faced with the difficulty that high-resolution imaging methods reach their limits at the nanometer-sized pores in this material. Until now it has not been possible to image the whole pore space with pore sizes that span two orders of magnitude. Therefore, it has not been possible to predict the transport properties of this material with the help computer simulations that require 3D pore structures as input. Following the concept of self-similarity, a digital pore microstructure was constructed from a real but incomplete pore microstructure. The constructed pore structure has the same pore size spectrum as measured in the laboratory. Computer simulations were used to predict capillary pressure curves during drainage, which also agree with laboratory data. It is predicted, that two-phase transport properties such as the evolution of effective permeability as well as capillary pressures during drainage depend both on transport directions, which should be considered for Opalinus Clay when assessing its suitability as host rock for nuclear waste. This directional dependence is controlled on the pore scale by a geometric anisotropy in the pore space.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Lin Jia ◽  
Kewen Li ◽  
Lipeng Zhao ◽  
Bhekumuzi Mgijimi Mahlalela

Abstract Spontaneous imbibition (SI) into a porous medium is an important transport phenomenon in petroleum reservoir engineering. The study of spontaneous water imbibition is critical to predict the production performance in these reservoirs developed by waterflooding, especially in the fractured gas reservoirs with active aquifers. While some studies have been reported to characterize spontaneous water imbibition into gas-saturated rocks, they are either limited or inaccurate due to the fact that the existing models have specific assumptions that cannot be applied in other time intervals. To this end, we proposed a novel transition imbibition time t* and developed an all-time (including both early- and later-time SI) model to match the experimental SI data. Furthermore, we proposed a novel model to estimate capillary pressures at different water saturations and to characterize the water saturation profile in capillary-dominated stage. Comparison with the existing capillary pressure estimation models was performed to test the differences. The results demonstrated that the all-time model could fit the experimental imbibition data of the entire SI process satisfactorily. The new saturation model established in this paper can be well fitted with the water saturation profile measured by the X-ray computer tomography (CT) scanners. The results and findings from this work may be of great significance in many areas related to SI, particularly in the development of naturally fractured gas reservoirs with active aquifers.


Sign in / Sign up

Export Citation Format

Share Document