Differences in brain cytochrome responses to carbon monoxide and cyanide in vivo

1987 ◽  
Vol 62 (3) ◽  
pp. 1277-1284 ◽  
Author(s):  
C. A. Piantadosi ◽  
A. L. Sylvia ◽  
F. F. Jobsis-Vandervliet

Cytochrome oxidation-reduction responses to two mitochondrial electron transport inhibitors, carbon monoxide (CO) and cyanide (CN), were studied in the intact brains of fluorocarbon-circulated rats. In vivo reflectance spectrophotometry indicated that cortical b-type cytochromes (564 nm) were highly resistant to reduction by CN in the presence of O2 but showed reduction responses to the administration of 1–5% CO in 90% O2. In contrast, cyanide-sensitive cytochromes aa3 (605 nm) and c + c1 (551 nm) did not increase their reduction levels during exposure to 5% CO in 90% O2. The in vivo CO-mediated b-cytochrome reduction responses did not occur after pretreatment with the cytochrome b inhibitor, antimycin A. Transmission spectrophotometry of superfused hemoglobin-free rat brain slices confirmed cortical b-type cytochromes to be CN-resistant in the presence of O2. Another cytochrome absorbing at 445 nm also was resistant to reduction by 1-mM cyanide in vitro, but it could be reduced anaerobically. The reduced 445-nm cytochrome bound CO in the presence of cyanide. We postulate that this CN-resistant CO binding component might account for in vivo cytochrome aa3-CO interactions and directly or indirectly modulate cytochrome b reduction responses to CO. In any event, the spectral data indicate different primary tissue target sites for CO and CN in living rat brain and also suggest different bioenergetic consequences of exposure to the two agents.

1995 ◽  
Vol 7 (3) ◽  
pp. 385 ◽  
Author(s):  
LD Longo ◽  
S Packianathan

Recent studies in vivo have demonstrated that ornithine decarboxylase (ODC) activity in the fetal rat brain is elevated 4-5-fold by acute maternal hypoxia. This hypoxic-associated increase is seen in the rat brain in both the newborn and the adult. Because of the intimate involvement of ODC in transcription and translation, as well as in growth and development, it is imperative that the manner in which hypoxia affects the regulation of this enzyme be better understood. In order to achieve this, a brain preparation in vitro was required to eliminate the confounding effects of the dam on the fetal and newborn brain ODC activity in vivo. Therefore, brain slices from 3-4-day-old (P-3) newborn rats were utilized to test the hypothesis that ODC activity increases in response to hypoxia in vitro. Cerebral slices from the P-3 rat pups were allowed to equilibrate and recover in artificial cerebrospinal fluid (ACSF) continuously bubbled with a mixture of 95% O2 and 5% CO2 for 1 h before beginning hypoxic exposures. Higher basal ODC activities were obtained by treating the slices with 0.03% fetal bovine serum (FBS) and 0.003% bovine serum albumin (BSA), rather than with ACSF alone. Hypoxia was induced in the slices by replacing the gas with 40%, 21%, 10%, or 5% O2, all with 5% CO2 and balance N2. With FBS and BSA treatment, ODC activity was maintained at about 0.15-0.11 nM CO2 mg-1 protein h-1 throughout the experiment, which was 2-3-fold higher than that without FBS and BSA. ODC activity increased significantly and peaked between 1 h and 2 h after initiation of hypoxia. For instance, with 21% O2, ODC activity increased approximately 1.5-fold at 1 h and approximately 2-fold at 2 h. These studies demonstrate that: (1) the hypoxic-induced increases observed in vivo in the fetal and newborn rat brain ODC activity can be approximated in a newborn rat brain slice preparation in vitro; (2) newborn rat brain slice preparations may provide an alternative to methods in vivo or cell culture methods for studying the regulation of acute hypoxic-induced enzymes; and (3) high, stable baseline ODC activities in brain slices suggest that the cells in the slice are capable of active metabolism if FBS and BSA are available to mimic conditions in vivo.


2000 ◽  
Vol 84 (2) ◽  
pp. 1093-1097 ◽  
Author(s):  
Virginia Tancredi ◽  
Giuseppe Biagini ◽  
Margherita D'Antuono ◽  
Jacques Louvel ◽  
René Pumain ◽  
...  

We obtained rat brain slices (550–650 μm) that contained part of the frontoparietal cortex along with a portion of the thalamic ventrobasal complex (VB) and of the reticular nucleus (RTN). Maintained reciprocal thalamocortical connectivity was demonstrated by VB stimulation, which elicited orthodromic and antidromic responses in the cortex, along with re-entry of thalamocortical firing originating in VB neurons excited by cortical output activity. In addition, orthodromic responses were recorded in VB and RTN following stimuli delivered in the cortex. Spontaneous and stimulus-induced coherent rhythmic oscillations (duration = 0.4–3.5 s; frequency = 9–16 Hz) occurred in cortex, VB, and RTN during application of medium containing low concentrations of the K+ channel blocker 4-aminopyridine (0.5–1 μM). This activity, which resembled electroencephalograph (EEG) spindles recorded in vivo, disappeared in both cortex and thalamus during application of the excitatory amino acid receptor antagonist kynurenic acid in VB ( n = 6). By contrast, cortical application of kynurenic acid ( n = 4) abolished spindle-like oscillations at this site, but not those recorded in VB, where their frequency was higher than under control conditions. Our findings demonstrate the preservation of reciprocally interconnected cortical and thalamic neuron networks that generate thalamocortical spindle-like oscillations in an in vitro rat brain slice. As shown in intact animals, these oscillations originate in the thalamus where they are presumably caused by interactions between RTN and VB neurons. We propose that this preparation may help to analyze thalamocortical synchronization and to understand the physiopathogenesis of absence attacks.


1976 ◽  
Vol 154 (2) ◽  
pp. 319-325 ◽  
Author(s):  
M S. Patel ◽  
O E. Owen

The effect of hyperphenylalaninaemia on the metabolism of ketone bodies in vivo and in vitro by developing rat brain was investigated. The incorporation in vivo of [14C]acetoacetate into cerebral lipids was decreased by both chronic (for 3 days) and acute (for 6h) hyperphenylalaninaemia induced by injecting phenylalanine into 1-week-old rats. In studies in vitro it was observed that the incorporation of the radioactivity from [14C]acetoacetate and 3-hydroxy[14C]butyrate into cerebral lipids was inhibited by phenyl-pyruvate, but not by phenylalanine. Phenylpyruvate also inhibited the incorporation of 3H from 3H2O into lipids by brain slices metabolizing either 3-hydroxybutyrate or acetoacetate in the presence of glucose. These findings suggest that the decrease in the incorporation in vivo of [14C]acetoacetate into cerebral lipids in hyperphenylalaninaemic rats is most likely caused by phenylpyruvate and not by phenylalanine. Phenylpyruvate as well as phenylalanine had no inhibitory effects on ketone-body-catabolizing enzymes, namely 3-hydroxybutyrate dehydrogenase, 3-oxo acid CoA-transferase and acetoacetyl-CoA thiolase, in rat brain. Phenylpyruvate but not phenylalanine inhibited the activity of the 2-oxoglutarate dehydrogenase complex from rat and human brain. These findings suggest that the metabolism of ketone bodies is impaired in brains of untreated phenylketonuric patients, and in turn may contribute to the diminution of mental development and function associated with phenylketonuria.


1989 ◽  
Vol 256 (4) ◽  
pp. C840-C848 ◽  
Author(s):  
C. A. Piantadosi

Terminal oxidase inhibitors such as cyanide (CN) and carbon monoxide (CO) produce different absorption changes in the intact brain, suggesting different mitochondrial responses to the inhibitors. In the present study, the nature of the cytochromes involved in CO and CN responses in vivo was investigated by low-temperature spectroscopy of rat brain, frozen in situ, and of preparations of brain homogenate and isolated mitochondria. Comparison of the spectra from different preparations at the high resolution afforded by low-temperature spectroscopy indicated that absorption responses to CO in vivo originated from mitochondrial b cytochromes. Further detailed spectral analysis of mitochondrial preparations revealed three CN-insensitive b cytochromes in nonsynaptic brain mitochondria; one cytochrome could be reduced by succinate in the presence of CN, the second could be reduced by succinate plus ATP, and the third could be reduced only by anaerobiosis. The spectral characteristics of the mitochondrial b cytochromes, when compared with spectra from CO-exposed brain tissue frozen in situ, strongly implicated the energy-dependent cytochrome b in the oxidation-reduction (redox) responses caused by CO in vivo.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S468-S468
Author(s):  
Jennifer K Callaway ◽  
Christine Molnar ◽  
Song T Yao ◽  
Bevyn Jarrott ◽  
R David Andrew

2021 ◽  
Vol 22 (5) ◽  
pp. 2285
Author(s):  
Thu Hang Lai ◽  
Susann Schröder ◽  
Magali Toussaint ◽  
Sladjana Dukić-Stefanović ◽  
Mathias Kranz ◽  
...  

The adenosine A2A receptor (A2AR) represents a potential therapeutic target for neurodegenerative diseases. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor changes of receptor density and/or occupancy during the A2AR-tailored therapy, we designed a library of fluorinated analogs based on a recently published lead compound (PPY). Among those, the highly affine 4-fluorobenzyl derivate (PPY1; Ki(hA2AR) = 5.3 nM) and the 2-fluorobenzyl derivate (PPY2; Ki(hA2AR) = 2.1 nM) were chosen for 18F-labeling via an alcohol-enhanced copper-mediated procedure starting from the corresponding boronic acid pinacol ester precursors. Investigations of the metabolic stability of [18F]PPY1 and [18F]PPY2 in CD-1 mice by radio-HPLC analysis revealed parent fractions of more than 76% of total activity in the brain. Specific binding of [18F]PPY2 on mice brain slices was demonstrated by in vitro autoradiography. In vivo PET/magnetic resonance imaging (MRI) studies in CD-1 mice revealed a reasonable high initial brain uptake for both radiotracers, followed by a fast clearance.


2002 ◽  
Vol 364 (2) ◽  
pp. 343-347 ◽  
Author(s):  
Gareth J.O. EVANS ◽  
Alan MORGAN

The secretory vesicle cysteine string proteins (CSPs) are members of the DnaJ family of chaperones, and function at late stages of Ca2+-regulated exocytosis by an unknown mechanism. To determine novel binding partners of CSPs, we employed a pull-down strategy from purified rat brain membrane or cytosolic proteins using recombinant hexahistidine-tagged (His6-)CSP. Western blotting of the CSP-binding proteins identified synaptotagmin I to be a putative binding partner. Furthermore, pull-down assays using cAMP-dependent protein kinase (PKA)-phosphorylated CSP recovered significantly less synaptotagmin. Complexes containing CSP and synaptotagmin were immunoprecipitated from rat brain membranes, further suggesting that these proteins interact in vivo. Binding assays in vitro using recombinant proteins confirmed a direct interaction between the two proteins and demonstrated that the PKA-phosphorylated form of CSP binds synaptotagmin with approximately an order of magnitude lower affinity than the non-phosphorylated form. Genetic studies have implicated each of these proteins in the Ca2+-dependency of exocytosis and, since CSP does not bind Ca2+, this novel interaction might explain the Ca2+-dependent actions of CSP.


1997 ◽  
Vol 77 (5) ◽  
pp. 2427-2445 ◽  
Author(s):  
Heath S. Lukatch ◽  
M. Bruce Maciver

Lukatch, Heath S. and M. Bruce MacIver. Physiology, pharmacology, and topography of cholinergic neocortical oscillations in vitro. J. Neurophysiol. 77: 2427–2445, 1997. Rat neocortical brain slices generated rhythmic extracellular field [microelectroencephalogram (micro-EEG)] oscillations at theta frequencies (3–12 Hz) when exposed to pharmacological conditions that mimicked endogenous ascending cholinergic and GABAergic inputs. Use of the specific receptor agonist and antagonist carbachol and bicuculline revealed that simultaneous muscarinic receptor activation and γ-aminobutyric acid-A (GABAA)-mediated disinhibition werenecessary to elicit neocortical oscillations. Rhythmic activity was independent of GABAB receptor activation, but required intact glutamatergic transmission, evidenced by blockade or disruption of oscillations by 6-cyano-7-nitroquinoxaline-2,3-dione and (±)-2-amino-5-phosphonovaleric acid, respectively. Multisite mapping studies showed that oscillations were localized to areas 29d and 18b (Oc2MM) and parts of areas 18a and 17. Peak oscillation amplitudes occurred in layer 2/3, and phase reversals were observed in layers 1 and 5. Current source density analysis revealed large-amplitude current sinks and sources in layers 2/3 and 5, respectively. An initial shift in peak inward current density from layer 1 to layer 2/3 indicated that two processes underlie an initial depolarization followed by oscillatory activity. Laminar transections localized oscillation-generating circuitry to superficial cortical layers and sharp-spike-generating circuitry to deep cortical layers. Whole cell recordings identified three distinct cell types based on response properties during rhythmic micro-EEG activity: oscillation-on (theta-on) and -off (theta-off) neurons, and transiently depolarizing glial cells. Theta-on neurons displayed membrane potential oscillations that increased in amplitude with hyperpolarization (from −30 to −90 mV). This, taken together with a glutamate antagonist-induced depression of rhythmic micro-EEG activity, indicated that cholinergically driven neocortical oscillations require excitatory synaptic transmission. We conclude that under the appropriate pharmacological conditions, neocortical brain slices were capable of producing localized theta frequency oscillations. Experiments examining oscillation physiology, pharmacology, and topography demonstrated that neocortical brain slice oscillations share many similarities with the in vivo and in vitro theta EEG activity recorded in other brain regions.


2015 ◽  
Vol 309 (4) ◽  
pp. E370-E379 ◽  
Author(s):  
Keeley L. Rose ◽  
Andrew J. Watson ◽  
Thomas A. Drysdale ◽  
Gediminas Cepinskas ◽  
Melissa Chan ◽  
...  

A common complication of type 1 diabetes mellitus is diabetic ketoacidosis (DKA), a state of severe insulin deficiency. A potentially harmful consequence of DKA therapy in children is cerebral edema (DKA-CE); however, the mechanisms of therapy-induced DKA-CE are unknown. Our aims were to identify the DKA treatment factors and membrane mechanisms that might contribute specifically to brain cell swelling. To this end, DKA was induced in juvenile mice with the administration of the pancreatic toxins streptozocin and alloxan. Brain slices were prepared and exposed to DKA-like conditions in vitro. Cell volume changes were imaged in response to simulated DKA therapy. Our experiments showed that cell swelling was elicited with isolated DKA treatment components, including alkalinization, insulin/alkalinization, and rapid reductions in osmolality. Methyl-isobutyl-amiloride, a nonselective inhibitor of sodium-hydrogen exchangers (NHEs), reduced cell swelling in brain slices elicited with simulated DKA therapy (in vitro) and decreased brain water content in juvenile DKA mice administered insulin and rehydration therapy (in vivo). Specific pharmacological inhibition of the NHE1 isoform with cariporide also inhibited cell swelling, but only in the presence of the anion transport (AT) inhibitor 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid. DKA did not alter brain NHE1 isoform expression, suggesting that the cell swelling attributed to the NHE1 was activity dependent. In conclusion, our data raise the possibility that brain cell swelling can be elicited by DKA treatment factors and that it is mediated by NHEs and/or coactivation of NHE1 and AT.


Sign in / Sign up

Export Citation Format

Share Document