Head position modifies upper airway resistance in men

1988 ◽  
Vol 64 (3) ◽  
pp. 1285-1288 ◽  
Author(s):  
G. Liistro ◽  
D. Stanescu ◽  
G. Dooms ◽  
D. Rodenstein ◽  
C. Veriter

We measured in healthy volunteers airway resistance (R(aw)), resistance of the respiratory system (Rrs), and supralaryngeal resistance (Rsl) in the following head positions: neutral, extended, and partially and fully flexed. Sagittal magnetic resonance images of the upper airways were recorded in neutral and flexed head positions. We observed significant increases in Raw (P less than 0.01), Rrs (P less than 0.001), and Rsl (P less than 0.001) in the flexed position, with respect to the neutral one, and corresponding decreases of specific airway and specific respiratory conductances. Resistances decreased (although not significantly) when the subjects' heads were extended. A decrease in both diameter and surface area of the hypopharyngeal airways (as shown by magnetic resonance images) with total head flexion was accompanied by significant increases in all measured resistances. Changes in the caliber of hypopharynx appear to be responsible for the increase in resistance during head flexion.

1985 ◽  
Vol 58 (5) ◽  
pp. 1489-1495 ◽  
Author(s):  
J. P. Farber

The suckling opossum exhibits an expiration-phased discharge in abdominal muscles during positive-pressure breathing (PPB); the response becomes apparent, however, only after the 3rd-5th wk of postnatal life. The purpose of this study was to determine whether the early lack of activation represented a deficiency of segmental outflow to abdominal muscles or whether comparable effects were observed in cranial outflows to muscles of the upper airways due to immaturity of afferent and/or supraspinal pathways. Anesthetized suckling opossums between 15 and 50 days of age were exposed to PPB; electromyogram (EMG) responses in diaphragm and abdominal muscles were measured, along with EMG of larynx dilator muscles and/or upper airway resistance. In animals older than approximately 30 days of age, the onset of PPB was associated with a prolonged expiration-phased EMG activation of larynx dilator muscles and/or decreased upper airway resistance, along with expiratory recruitment of the abdominal muscle EMG. These effects persisted as long as the load was maintained. Younger animals showed only those responses related to the upper airway; in fact, activation of upper airway muscles during PPB could be associated with suppression of the abdominal motor outflow. After unilateral vagotomy, abdominal and upper airway motor responses to PPB were reduced. The balance between PPB-induced excitatory and inhibitory or disfacilitory influences from the supraspinal level on abdominal motoneurons and/or spinal processing of information from higher centers may shift toward net excitation as the opossum matures.


2005 ◽  
Vol 103 (3) ◽  
pp. 484-488 ◽  
Author(s):  
Ronald S. Litman ◽  
Nicole Wake ◽  
Lai-Ming Lisa Chan ◽  
Joseph M. McDonough ◽  
Sanghun Sin ◽  
...  

Background Lateral positioning decreases upper airway obstruction in paralyzed, anesthetized adults and in individuals with sleep apnea during sleep. The authors hypothesized that lateral positioning increases upper airway cross-sectional area and total upper airway volume when compared with the supine position in sedated, spontaneously breathing children. Methods Children aged 2-12 yr requiring magnetic resonance imaging examination of the head or neck region using deep sedation with propofol were studied. Exclusion criteria included any type of anatomical or neurologic entity that could influence upper airway shape or size. T1 axial scans of the upper airway were obtained in the supine and lateral positions, with the head and neck axes maintained neutral. Using software based on fuzzy connectedness segmentation (3D-VIEWNIX; Medical Imaging Processing Group, University of Pennsylvania, Philadelphia, PA), the magnetic resonance images were processed and segmented to render a three-dimensional reconstruction of the upper airway. Total airway volumes and cross-sectional areas were computed between the nasal vomer and the vocal cords. Two-way paired t tests were used to compare airway sizes between supine and lateral positions. Results Sixteen of 17 children analyzed had increases in upper airway total volume. The total airway volume (mean +/- SD) was 6.0 +/- 2.9 ml in the supine position and 8.7 +/- 2.5 ml in the lateral position (P < 0.001). All noncartilaginous areas of the upper airway increased in area in the lateral compared with the supine position. The region between the tip of the epiglottis and vocal cords demonstrated the greatest relative percent change. Conclusions The upper airway of a sedated, spontaneously breathing child widens in the lateral position. The region between the tip of the epiglottis and the vocal cords demonstrates the greatest relative percent increase in size.


1973 ◽  
Vol 82 (6) ◽  
pp. 827-830 ◽  
Author(s):  
John Cavo ◽  
Joseph H. Ogura ◽  
Donald G. Sessions ◽  
J. Roger Nelson

The role of the upper airway (the breathing passage above the trachea) in maintaining the normal junction of the respiratory system has been suggested by previous investigators. During a tracheotomy the upper airway is by-passed by a prosthetic metal or plastic tube which is placed into the trachea through the neck. In order to determine which, among the most commonly used tracheotomy tubes, most closely simulate the flow resistance of the adult human upper airway, a series of varying flow rates were passed through different sized tubes. Pressure drops were recorded and resistance values were thereby determined. Our data was compared with previously determined values for flow resistance of the adult human upper airway. Resistance related to turbulent and laminar flow was considered. On the basis of our data we have suggested that large caliber tracheotomy tubes be used in adult patients in whom the prolonged need for a tracheotomy is anticipated.


2006 ◽  
Vol 101 (3) ◽  
pp. 745-751 ◽  
Author(s):  
A. Oliven ◽  
M. Odeh

Positional changes of anatomic structures surrounding the upper airway are known to affect pharyngeal mechanics and collapsibility. We hypothesized that these alterations also affect the ability of the upper airway dilator muscles to enlarge the pharynx by altering their ability to shorten when activated. Using sonomicrometry, we evaluated in seven anesthetized dogs the effects of changes in tracheal and head position on the length of the genioglossus (GG) and the geniohyoid (GH) and the effects of these positional changes on the magnitude of shortening of the two muscles in response to electro- (ES) and chemostimulation (CS). Caudal traction of the trachea lengthened the GG and GH in all dogs, whereas cranial displacement of the trachea and flexion of the head to a vertical position shortened the muscles. Compared with the magnitude of ES-induced shortening in the neutral position, ES-induced shortening of the GG was 144.7 ± 14.6, 49.3 ± 4.3, and 33.5 ± 11.6% during caudal and cranial displacement of the trachea and during head flexion, respectively. Similar effects of the positional changes were found for the GH, as well as for both muscles during respiratory stimulation with Pco2 of 90 Torr at the end of CO2 rebreathing, although inspiratory muscle shortening during CS reached only one-quarter to one-third of the magnitude observed during ES. We conclude that positional alterations of anatomic structures in the neck have a dramatic effect on the magnitude of shortening of the activated GG and GH, which may reduce substantially their ability to protect pharyngeal patency.


1996 ◽  
Vol 84 (2) ◽  
pp. 273-279. ◽  
Author(s):  
Mali Mathru ◽  
Oliver Esch ◽  
John Lang ◽  
Michael E. Herbert ◽  
Gregory Chaljub ◽  
...  

Background Anesthetic agents inhibit the respiratory activity of upper airway muscles more than the diaphragm, creating a potential for narrowing or complete closure of the pharyngeal airway during anesthesia. Because the underlying mechanisms leading to airway obstruction in sleep apnea and during anesthesia are similar, it was hypothesized that anesthesia-induced pharyngeal narrowing could be counteracted by applying nasal continuous positive airway pressure (CPAP). Methods Anesthesia was induced in ten healthy volunteers (aged 25-34 yr) by intravenous administration of propofol in 50-mg increments every 30-s to a maximum of 300 mg. Magnetic resonance images of the upper airway (slice thickness of 5 mm or less) were obtained in the awake state, during propofol anesthesia, and during administration of propofol plus 10 cm nasal CPAP. Results Minimum anteroposterior diameter of the pharynx at the level of the soft palate decreased from 6.6 +/- 2.2 mm (SD) in the awake state to 2.7 +/- 1.5 mm (P < 0.05) during propofol anesthesia and increased to 8.43 +/- 2.5 mm (P < 0.05) after nasal CPAP application. Anteroposterior diameter of the pharynx at the level of the dorsum of the tongue increased from 7.9 +/- 3.5 mm during propofol anesthesia to 12.9 +/- 3.6 mm (P < 0.05) after nasal CPAP. Pharyngeal volume (from the tip of the epiglottis to the tip of the soft palate, assuming this space to be a truncated cone) significantly increased from 2,437 +/- 1,008 mm3 during propofol anesthesia to 5,847 +/- 2,827 mm3 (P < 0.05) after nasal CPAP application. Conclusions In contrast to the traditional view that relaxation of the tongue causes airway obstruction, this study suggests that airway closure occurs at the level of the soft palate. Application of nasal CPAP can counteract an anesthesia-induced pharyngeal narrowing by functioning as a pneumatic splint. This is supported by the observed reduction in anteroposterior diameter at the level of the soft palate during propofol anesthesia and the subsequent increase in this measurement during nasal CPAP application.


1990 ◽  
Vol 68 (5) ◽  
pp. 2159-2164 ◽  
Author(s):  
F. Series ◽  
Y. Cormier ◽  
M. Desmeules

The total upper airway resistances are modified during active changes in lung volume. We studied nine normal subjects to assess the influence of passive thoracopulmonary inflation and deflation on nasal and pharyngeal resistances. With the subjects lying in an iron lung, lung volumes were changed by application of an extrathoracic pressure (Pet) from 0 to 20 (+Pet) or -20 cmH2O (-Pet) in 5-cmH2O steps. Upper airway pressures were measured with two low-bias flow catheters, one at the tip of the epiglottis and the other in the posterior nasopharynx. Breath-by-breath resistance measurements were made at an inspiratory flow rate of 300 ml/s at each Pet step. Total upper airway, nasal, and pharyngeal resistances increased with +Pet [i.e., nasal resistance = 139.6 +/- 14.4% (SE) of base-line and pharyngeal resistances = 189.7 +/- 21.1% at 10 cmH2O of +Pet]. During -Pet there were no significant changes in nasal resistance, whereas pharyngeal resistance decreased significantly (pharyngeal resistance = 73.4 +/- 7.4% at -10 cmH2O). We conclude that upper airway resistance, particularly the pharyngeal resistance, is influenced by passive changes in lung volumes, especially pulmonary deflation.


2016 ◽  
Vol 120 (7) ◽  
pp. 758-765 ◽  
Author(s):  
Mingshu Cai ◽  
Elizabeth C. Brown ◽  
Alice Hatt ◽  
Shaokoon Cheng ◽  
Lynne E. Bilston

Head and jaw position influence upper airway patency and electromyographic (EMG) activity of the main upper airway dilator muscle, the genioglossus. However, it is not known whether changes in genioglossus EMG activity translate into altered muscle movement during respiration. The aim of this study was to determine the influence of head and jaw position on dilatory motion of the genioglossus in healthy adult men during quiet breathing by measuring the displacement of the posterior tongue in six positions—neutral, head extension, head rotation, head flexion, mouth opening, and mandibular advancement. Respiratory-related motion of the genioglossus was imaged with spatial modulation of magnetization (SPAMM) in 12 awake male participants. Tissue displacement was quantified with harmonic phase (HARP) analysis. The genioglossus moved anteriorly beginning immediately before or during inspiration, and there was greater movement in the oropharynx than in the velopharynx in all positions. Anterior displacements of the oropharyngeal tongue varied between neutral head position (0.81 ± 0.41 mm), head flexion (0.62 ± 0.45 mm), extension (0.39 ± 0.19 mm), axial rotation (0.39 ± 0.2 mm), mouth open (1.24 ± 0.72 mm), and mandibular advancement (1.08 ± 0.65 mm). Anteroposterior displacement increased in the mouth-open position and decreased in the rotated position relative to cross-sectional area (CSA) ( P = 0.002 and 0.02, respectively), but CSA did not independently predict anteroposterior movement overall ( P = 0.057). The findings of this study suggest that head position influences airway dilation during inspiration and may contribute to variation in airway patency in different head positions.


2015 ◽  
Vol 2015 ◽  
pp. 1-3 ◽  
Author(s):  
Charline Bertholdt ◽  
Estelle Perdriolle-Galet ◽  
Pascale Bach-Segura ◽  
Olivier Morel

Tracheal agenesis is a rare congenital anomaly. The prevalence is less than 1 : 50 000 with a male to female ratio of 2 : 1. This anomaly may be isolated but, in 93% of cases, it is part of polymalformative syndrome. The most evocative diagnosis situation is the ultrasonographic congenital high airway obstruction syndrome. Dilated airways, enlarged lungs with flattened diaphragm, fetal ascites and severe nonimmune hydrops can be observed. In the absence of a congenital high airway obstruction syndrome, the antenatal diagnosis of tracheal agenesis is difficult. Tracheal agenesis should be suspected in the presence of an unexplained polyhydramnios associated with congenital malformations. The fetal airway exploration should then be systematically performed by fetal thoracic magnetic resonance imaging. A case of Floyd’s type II tracheal agenesis, detected during the postnatal period, is reported here. The retrospective reexamination of fetal magnetic resonance images showed that the antenatal diagnosis would have been easy if a systematical examination of upper airways had been performed. Prenatal diagnosis of tracheal agenesis is possible with fetal MRI but the really challenge is to think about this pathology.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0130186 ◽  
Author(s):  
Huahui Xiong ◽  
Xiaoqing Huang ◽  
Yong Li ◽  
Jianhong Li ◽  
Junfang Xian ◽  
...  

1999 ◽  
Vol 87 (3) ◽  
pp. 969-976 ◽  
Author(s):  
Claudio Tantucci ◽  
Alexandre Duguet ◽  
Anna Ferretti ◽  
Selma Mehiri ◽  
Isabelle Arnulf ◽  
...  

In spontaneously breathing subjects, intrathoracic expiratory flow limitation can be detected by applying a negative expiratory pressure (NEP) at the mouth during tidal expiration. To assess whether NEP might increase upper airway resistance per se, the interrupter resistance of the respiratory system (Rint,rs) was computed with and without NEP by using the flow interruption technique in 12 awake healthy subjects, 6 nonsnorers (NS), and 6 nonapneic snorers (S). Expiratory flow (V˙) and Rint,rs were measured under control conditions with V˙ increased voluntarily and during random application of brief (0.2-s) NEP pulses from −1 to −7 cmH2O, in both the seated and supine position. In NS, Rint,rs with spontaneous increase inV˙ and with NEP was similar [3.10 ± 0.19 and 3.30 ± 0.18 cmH2O ⋅ l−1 ⋅ s at spontaneous V˙ of 1.0 ± 0.01 l/s and atV˙ of 1.1 ± 0.07 l/s with NEP (−5 cmH2O), respectively]. In S, a marked increase in Rint,rs was found at all levels of NEP ( P < 0.05). Rint,rs was 3.50 ± 0.44 and 8.97 ± 3.16 cmH2O ⋅ l−1 ⋅ s at spontaneous V˙ of 0.81 ± 0.02 l/s and atV˙ of 0.80 ± 0.17 l/s with NEP (−5 cmH2O), respectively ( P < 0.05). With NEP, Rint,rs was markedly higher in S than in NS both seated ( F = 8.77; P < 0.01) and supine ( F = 9.43; P < 0.01). In S,V˙ increased much less with NEP than in NS and was sometimes lower than without NEP, especially in the supine position. This study indicates that during wakefulness nonapneic S have more collapsible upper airways than do NS, as reflected by the marked increase in Rint,rs with NEP. The latter leads occasionally to an actual decrease in V˙ such as to invalidate the NEP method for detection of intrathoracic expiratory flow limitation.


Sign in / Sign up

Export Citation Format

Share Document