Regulation of phosphorylase a activity in human skeletal muscle

1990 ◽  
Vol 69 (3) ◽  
pp. 919-923 ◽  
Author(s):  
J. M. Ren ◽  
E. Hultman

The control mechanism of glycogenolysis by phosphorylase a in contracting muscle has been investigated. The quadriceps femoris muscles of six subjects were intermittently stimulated at 15 and 50 Hz. The stimulation lasted 9.6 s and was performed twice at 15 Hz and once at 50 Hz. Epinephrine was infused continuously during the experiment. The force generation and ATP turnover rate were nearly twofold higher at 50 Hz than at 15 Hz. Calculated mean Pi was 5.7 and 10.0 mM during the two 15-Hz stimulations and 8.1 mM during the 50-Hz stimulation. Phosphorylase a varied between 85.5 and 91.5% without significant differences between periods. However, the rate of glycogenolysis was twofold higher during the stimulation at 50 Hz than it was at 15 Hz (P less than 0.05) and was related to the ATP turnover rate (r = 0.992). These results demonstrate that rapid glycogen breakdown during muscle contraction cannot be solely explained by transformation of phosphorylase b to a and increased Pi concentration. The contraction intensity may determine the glycogenolytic rate through a transient increase in free AMP level related to the ATP turnover rate.

Diabetes ◽  
1997 ◽  
Vol 46 (12) ◽  
pp. 1965-1969 ◽  
Author(s):  
S. Lund ◽  
G. D. Holman ◽  
J. R. Zierath ◽  
J. Rincon ◽  
L. A. Nolte ◽  
...  

2010 ◽  
Vol 98 (3) ◽  
pp. 145a
Author(s):  
Melanie Stewart ◽  
Kathleen Franks-Skiba ◽  
Roger Cooke

2001 ◽  
Vol 280 (2) ◽  
pp. C352-C358 ◽  
Author(s):  
Marni D. Boppart ◽  
Michael F. Hirshman ◽  
Kei Sakamoto ◽  
Roger A. Fielding ◽  
Laurie J. Goodyear

Physical exercise and contraction increase c-Jun NH2-terminal kinase (JNK) activity in rat and human skeletal muscle, and eccentric contractions activate JNK to a greater extent than concentric contractions in human skeletal muscle. Because eccentric contractions include a lengthening or stretch component, we compared the effects of isometric contraction and static stretch on JNK and p38, the stress-activated protein kinases. Soleus and extensor digitorum longus (EDL) muscles dissected from 50- to 90-g male Sprague-Dawley rats were subjected to 10 min of electrical stimulation that produced contractions and/or to 10 min of stretch (0.24 N tension, 20–25% increase in length) in vitro. In the soleus muscle, contraction resulted in a small, but significant, increase in JNK activity (1.8-fold above basal) and p38 phosphorylation (4-fold). Static stretch had a much more profound effect on the stress-activated protein kinases, increasing JNK activity 19-fold and p38 phosphorylation 21-fold. Increases in JNK activation and p38 phosphorylation in response to static stretch were fiber-type dependent, with greater increases occurring in the soleus than in the EDL. Immunohistochemistry performed with a phosphospecific antibody revealed that activation of JNK occurred within the muscle fibers. These studies suggest that the stretch component of a muscle contraction may be a major contributor to the increases in JNK activity and p38 phosphorylation observed after exercise in vivo.


Sign in / Sign up

Export Citation Format

Share Document