Effects of body position and lung volume on in situ operating length of canine diaphragm

1990 ◽  
Vol 69 (5) ◽  
pp. 1702-1708 ◽  
Author(s):  
S. S. Margulies ◽  
G. A. Farkas ◽  
J. R. Rodarte

The performance of the diaphragm is influenced by its in situ length relative to its optimal force-generating length (Lo). Lead markers were sutured to the abdominal surface of the diaphragm along bundles of the left ventral, middle, and dorsal regions of the costal diaphragm and the left crural diaphragm of six beagle dogs. After 2-3 wk postoperative recovery, the dogs were anesthetized, paralyzed, and scanned prone and supine in the Dynamic Spatial Reconstructor (DSR) at a total lung capacity (TLC), functional residual capacity (FRC), and residual volume (RV). The location of each marker was digitized from the reconstructed DSR images, and in situ lengths were determined. After an overdose of anesthetic had been administered to the dogs, each marked diaphragm bundle was removed, mounted in a 37 degrees C in vitro chamber, and adjusted to Lo (maximum tetanic force). The operating length of the diaphragm, or in situ length expressed as percent Lo, varied from region to region at the lung volumes studied; variability was least at RV and increased with increasing lung volume. At FRC, all regions of the diaphragm was shorter in the prone posture compared with the supine, but there was no clear gravity-dependent vertical gradient of in situ length in either posture. Because in vitro length-tension characteristics were similar for all diaphragm regions, regional in vivo length differences indicate that the diaphragm's potential to generate maximal force is nonuniform.

1990 ◽  
Vol 69 (6) ◽  
pp. 2296-2302 ◽  
Author(s):  
J. Sprung ◽  
C. Deschamps ◽  
S. S. Margulies ◽  
R. D. Hubmayr ◽  
J. R. Rodarte

The in situ lengths of muscle bundles of the crural and three regions of the costal diaphragm between origin and insertion were determined with a video roentgenographic technique in dogs. At total lung capacity (TLC) in both the prone and supine positions, the length of the diaphragm is not significantly different from the unstressed excised length, suggesting that the diaphragm is not under tension at TLC and that there is a hydrostatic gradient of pleural pressure on the diaphragmatic surface. Except for the ventral region of the costal diaphragm, which does not change length at lung volumes greater than 70% TLC, all other regions are stretched during passive deflations from TLC. Therefore below TLC the diaphragm is under passive tension and supports a transdiaphragmatic pressure (Pdi). The length of the diaphragm relative to its unstressed length is not uniform at functional residual capacity (FRC) and does not follow a strict vertical gradient that reverses when the animal is changed from the supine to the prone position. By inference, the length of muscle bundles is determined by factors other than the vertical gradient of Pdi. During mechanical ventilation, regional shortening is identical to the passive deflation length-volume relationship near FRC. Prone and supine FRC is the same, but the diaphragm is slightly shorter in the prone position. In both positions, during spontaneous ventilation there are no consistent differences in regional fractional shortening, despite regional differences in initial length relative to unstressed length.


1988 ◽  
Vol 65 (6) ◽  
pp. 2427-2433 ◽  
Author(s):  
G. A. Farkas ◽  
D. F. Rochester

To assess the characteristics and function of the muscles of the anterolateral abdominal wall, we have examined the isometric contractile properties of bundles of canine rectus abdominis (RA) and external oblique (EO) muscles. In addition, we have related the lengths of these muscles measured sonometrically in vivo at supine functional residual capacity (FRC) to in vitro optimal force-producing length (Lo). We also investigated the action of the abdominal muscles on the displacement of costal and crural diaphragm. We found that 1) contraction time of RA was longer and that the RA developed greater force than the EO at submaximal stimulation frequencies; 2) maximal tetanic force and the active length-tension curves were similar in both abdominal muscles; 3) on passive stretch, the compliance of the RA was one-third that of the EO; 4) at supine FRC, the EO is operating at 83% of Lo, whereas the RA is operating at 105% of Lo; 5) stimulation of either RA or EO (abdominal pressure of 15 cmH2O) lengthened the costal and crural diaphragm toward their Lo values, with greater crural excursion occurring than costal. We conclude that the RA is well suited for restraining the abdominal viscera in prone quadrupeds, whereas the EO is better designed to assist expiration. Stimulation of both muscles improves in situ diaphragmatic operating length.


1986 ◽  
Vol 60 (1) ◽  
pp. 225-231 ◽  
Author(s):  
A. Oliven ◽  
G. S. Supinski ◽  
S. G. Kelsen

Costal strips of diaphragmatic muscle obtained from animals with elastase-induced emphysema generate maximum tension at significantly shorter muscle fiber lengths than muscle strips from control animals. The present study examined the consequences of alterations in the length-tension relationship assessed in vitro on the pressure generated by the diaphragm in vivo. Transdiaphragmatic pressure (Pdi) and functional residual capacity (FRC) were measured in 22 emphysematous and 22 control hamsters 4–5 mo after intratracheal injection of pancreatic elastase or saline, respectively. In 12 emphysematous and 12 control hamsters Pdi was also measured during spontaneous contractions against an occluded airway. To allow greater control over muscle excitation, Pdi was measured during bilateral tetanic (50 Hz) electrical stimulation of the phrenic nerves in 10 emphysematous and 10 control hamsters. Mean FRC in the emphysematous hamsters was 183% of the value in control hamsters (P less than 0.01). During spontaneous inspiratory efforts against a closed airway the highest Pdi generated at FRC tended to be greater in control than emphysematous hamsters. When control hamsters were inflated to a lung volume approximating the FRC of emphysematous animals, however, peak Pdi was significantly greater in emphysematous animals (70 +/- 6 and 41 +/- 8 cmH2O; P less than 0.05). With electrophrenic stimulation, the Pdi-lung volume curve was shifted toward higher lung volumes in emphysematous hamsters. Pdi at all absolute lung volumes at and above the FRC of emphysematous hamsters was significantly greater in emphysematous compared with control animals. Moreover, Pdi continued to be generated by emphysematous hamsters at levels of lung volume where Pdi of control subjects was zero.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 76 (4) ◽  
pp. 1774-1785 ◽  
Author(s):  
L. E. Olson ◽  
E. A. Hoffman

Lung volume, gradients in lung air content, and maximum in vivo lung dimensions were determined in rabbits in the prone, supine, and right and left lateral positions with a high-speed electron beam X-ray computed tomography scanner (Imatron C-100). Measurements were made at lung volumes corresponding to tracheal pressures of 0, 10, and 25 cmH2O. Three groups of rabbits were studied > or = 8 wk after surgery: sham-operated controls, left pneumonectomized, and left pneumonectomized with wax plombage. The magnitudes of the gradients in each direction (lung, length, width, and height) depended on lung volume and body position. The vertical gradient in air content was the largest in each group in each posture. In general, pneumonectomy did not influence the effects of the prone and supine positions on lung volume and volume distribution but did influence the effects of the right and left lateral positions on those variables. These results may be attributed to the variable effects of the mediastinal and abdominal contents on regional distending pressures.


1986 ◽  
Vol 61 (1) ◽  
pp. 220-226 ◽  
Author(s):  
G. A. Farkas ◽  
D. F. Rochester

The neck inspiratory muscles are recruited to support breathing under numerous conditions. To gain insight into their synergistic actions we examined the isometric contractile properties of bundles from canine scalene and sternomastoid muscles. In addition, we also related the length of the neck muscles, measured sonomicrometrically in vivo at different lung volumes and body positions, to their optimal force-producing length (Lo) determined in vitro. We found that the speed of the sternomastoid is somewhat faster than that of the scalene owing to a shorter relaxation rate; the sternomastoid generates higher forces at submaximal stimulation frequencies than the scalene; the maximal tetanic force corrected for cross-sectional area is the same for both neck muscles; the neck muscles are significantly faster than the canine costal diaphragm; at supine functional residual capacity (FRC), the scalene is operating at a length corresponding to 85% Lo, whereas the sternomastoid is significantly shorter at 75% Lo; increasing lung volume shortens both muscles slightly, the length at supine total lung capacity being approximately 5% shorter than at FRC; and in the upright posture, both neck muscles lengthen toward their Lo, with the sternomastoid lengthening more than the scalene. We conclude that the scalene is a more effective force generator than the sternomastoid with the animal lying supine; the neck muscles appear to maintain their force-generating potential regardless of the lung volume; and the force-generating potential of the neck muscles is greatly enhanced with the animal in the upright vs. the supine position. This may contribute to the augmented rib cage motion characteristic of breathing in the upright posture.


1988 ◽  
Vol 65 (5) ◽  
pp. 2253-2260 ◽  
Author(s):  
G. A. Farkas ◽  
D. F. Rochester

We estimated the in situ force-generating capacity of the costal and crural portions of the canine diaphragm by relating in vitro contractile properties and diaphragmatic dimensions to in situ lengths. Piezoelectric crystals were implanted on right costal and left crural diaphragms of anesthetized dogs, via midline laparatomy. With the abdomen reclosed, diaphragm lengths were recorded at five lung volumes. Contractile properties of excised muscle bundles were then measured. In vitro force-frequency and length-tension characteristics of the costal and crural diaphragms were virtually identical; their optimal force values were 2.15 and 2.22 kg/cm2, respectively. In situ, at residual volume, functional residual capacity (FRC), and total lung capacity the costal diaphragm lay at 102, 95, and 60% of optimal length (Lo), whereas the crural diaphragm lay at 88, 84, and 66% of Lo. Muscle cross-sectional area was 40% greater in costal than in crural diaphragms. Considering in situ lengths, cross-sectional areas, and in vitro length-tension characteristics at FRC, the costal diaphragm could exert 60% more force than the crural diaphragm.


1986 ◽  
Vol 60 (1) ◽  
pp. 63-70 ◽  
Author(s):  
J. Road ◽  
S. Newman ◽  
J. P. Derenne ◽  
A. Grassino

Diaphragmatic length was measured by sonomicrometry and transdiaphragmatic pressure (Pdi) by conventional latex balloons in eight dogs anesthetized with pentobarbital sodium under passive conditions and during supramaximal phrenic stimulation. The passive length-pressure relationship indicates that the crural part of the diaphragm is more compliant than the costal part. With supramaximal stimulation the costal diaphragm showed a length-pressure relationship similar in shape to in vitro length-tension curves previously described for the canine diaphragm. The crural part has a smaller pressure-length slope than the costal part in the length range from 80% of optimum muscle length (Lo) to Lo. At supine functional residual capacity (FRC) the resting length (LFRC) of the costal and crural diaphragms are not at Lo. The costal part is distended to 105% of Lo, and crural is shortened to 92% of Lo. Tidal shortening will increase the force output of costal while decreasing that of the crural diaphragm. The major forces setting the passive supine LFRC are the abdominal weight (pressure) and the elastic recoil of the lungs. The equilibrium length (resting length of excised diaphragmatic strips) was 79 +/- 3.6% LFRC for the costal diaphragm and 87 +/- 3.9% LFRC for the crural diaphragm. Similar shortening was obtained in the upright position, indicating passive diaphragmatic stretch at supine LFRC.


1978 ◽  
Vol 44 (4) ◽  
pp. 547-552 ◽  
Author(s):  
P. D. Pare ◽  
R. Boucher ◽  
M. C. Michoud ◽  
J. C. Hogg

Subdivisions of lung volume and pressure-volume (PV) curves of the lung and chest wall (CW) were measured in 12 rhesus monkeys (Macacca mulatta) under pentobarbital anesthesia. In addition, volumes and PV curves were obtained on the excised lungs and lobes of 12 cynomolgus monkeys (M. fasicularis). Boyle's law was used to determine functional residual capacity (FRC) in the intact animals and water displacement to determine minimal volume (MV) in the excised lungs. Total lung capacity (TLC = lung volume at a transpulmonary pressure of 30 cmH2O) was similar in vivo and in vitro (90 + 83 ml/kg) but residual volume (RV = volume at airway pressure of -50 cmH2O) and MV differed markedly (16.5 + 5.9 ml/kg). In the intact animals a very stiff CW appeared to determine RV, whereas airway closure determined MV in excised lungs. PV curves of upper and lower lobes were not different when expressed as %TLC but when expressed as milliliters of gas per gram of lung, the upper lobes contained significantly more gas per unit weight.


2000 ◽  
Vol 89 (3) ◽  
pp. 956-960 ◽  
Author(s):  
Robert H. Brown ◽  
Wayne Mitzner

When airway smooth muscle is contracted in vitro, the airway lumen continues to narrow with increasing concentrations of agonist until complete airway closure occurs. Although there remains some controversy regarding whether airways can close in vivo, recent work has clearly demonstrated that, if the airway is sufficiently stimulated with contractile agonists, complete closure of even large cartilaginous conducting airways can readily occur with the lung at functional residual capacity (Brown RH and Mitzner W. J Appl Physiol 85: 2012–2017, 1998). This result suggests that the tethering of airways in situ by parenchymal attachments is small at functional residual capacity. However, at lung volumes above functional residual capacity, the outward tethering of airways should increase, because both the parenchymal shear modulus and tethering forces increase in proportion to the transpulmonary pressure. In the present study, we tested whether we could prevent airway closure in vivo by increasing lung volume with positive end-expiratory pressure (PEEP). Airway smooth muscle was stimulated with increasing methacholine doses delivered directly to airway smooth muscle at three levels of PEEP (0, 6, and 10 cmH2O). Our results show that increased lung volume shifted the airway methacholine dose-response curve to the right, but, in many airways in most animals, airway closure still occurred even at the highest levels of PEEP.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Sign in / Sign up

Export Citation Format

Share Document