Determinants of transdiaphragmatic pressure in dogs

1990 ◽  
Vol 69 (6) ◽  
pp. 2050-2056 ◽  
Author(s):  
R. D. Hubmayr ◽  
J. Sprung ◽  
S. Nelson

We measured the transdiaphragmatic pressure (Pdi) during bilateral phrenic nerve stimulation and evaluated the determinants of its change with lung volume, chest wall geometry, and respiratory system impedance in supine dogs. Four rows of radiopaque markers were sewn onto muscle bundles of the costal and crural diaphragm between their origin on the central tendon and their insertion on the rib cage and spine. The length of the diaphragm (L) was determined from the projection images of marker rows using biplane fluoroscopy. Measurements were made at lung volumes between total lung capacity and functional residual capacity before and after the infusion of Ringer lactate solution into the abdominal cavity. In contrast to relaxation, during tetanic stimulation the active lengths of the muscle bundles were similar at all volumes, but the diaphragm assumed different shapes. Although the small differences in active muscle length with volume and liquid loads are consistent with only small changes in muscle force output, Pdi varied by a factor of greater than or equal to 5. There was no single L/Pdi curve that fitted all data during 50-Hz stimulations. We conclude that under these experimental conditions Pdi is not a unique measure of the force produced by the diaphragm and that lung volume, chest wall geometry, and respiratory system impedance are important determinants of the mechanical efficiency of the diaphragm as a pressure generator.

1992 ◽  
Vol 73 (6) ◽  
pp. 2283-2288 ◽  
Author(s):  
T. A. Wilson ◽  
A. De Troyer

The chest wall is modeled as a linear system for which the displacements of points on the chest wall are proportional to the forces that act on the chest wall, namely, airway opening pressure and active tension in the respiratory muscles. A standard theorem of mechanics, the Maxwell reciprocity theorem, is invoked to show that the effect of active muscle tension on lung volume, or airway pressure if the airway is closed, is proportional to the change of muscle length in the relaxation maneuver. This relation was tested experimentally. The shortening of the cranial-caudal distance between a rib pair and the sternum was measured during a relaxation maneuver. These data were used to predict the respiratory effect of forces applied to the ribs and sternum. To test this prediction, a cranial force was applied to the rib pair and a caudal force was applied to the sternum, simulating the forces applied by active tension in the parasternal intercostal muscles. The change in airway pressure, with lung volume held constant, was measured. The measured change in airway pressure agreed well with the prediction. In some dogs, nonlinear deviations from the linear prediction occurred at higher loads. The model and the theorem offer the promise that existing data on the configuration of the chest wall during the relaxation maneuver can be used to compute the mechanical advantage of the respiratory muscles.


1985 ◽  
Vol 59 (6) ◽  
pp. 1947-1954 ◽  
Author(s):  
M. Lopata ◽  
E. Onal ◽  
G. Cromydas

To assess respiratory neuromuscular function and load compensating ability in patients with chronic airway obstruction (CAO), we studied eight stable patients with irreversible airway obstruction during hyperoxic CO2 rebreathing with and without a 17 cmH2O X l-1 X s flow-resistive inspiratory load (IRL). Minute ventilation (VE), transdiaphragmatic pressure (Pdi), and diaphragmatic electromyogram (EMGdi) were monitored. Pdi and EMGdi were obtained via a single gastroesophageal catheter with EMGdi being quantitated as the average rate of rise of inspiratory (moving average) activity. Based on the effects of IRL on the Pdi response to CO2 [delta Pdi/delta arterial CO2 tension (PaCO2)] and the change in Pdi for a given change in EMGdi (delta Pdi/delta EMGdi) during rebreathing, two groups could be clearly identified. Four patients (group A) were able to increase delta Pdi/delta PaCO2 and delta Pdi/delta EMGdi, whereas in the other four (group B) the IRL responses decreased. All group B patients were hyperinflated having significantly greater functional residual capacity (FRC) and residual volume than group A. In addition the IRL induced percent change in delta Pdi/delta PaCO2, and delta VE/delta PaCO2 was negatively correlated with lung volume so that in the hyperinflated group B the higher the FRC the greater was the decrease in Pdi response due to IRL. In both groups the greater the FRC the greater was the decrease in the ventilatory response to loading. Patients with CAO, even with severe airways obstruction, can effect load compensation by increasing diaphragmatic force output, but the presence of increased lung volume with the associated shortened diaphragm prevents such load compensation.


1991 ◽  
Vol 70 (6) ◽  
pp. 2611-2618 ◽  
Author(s):  
T. Mutoh ◽  
W. J. Lamm ◽  
L. J. Embree ◽  
J. Hildebrandt ◽  
R. K. Albert

Abdominal distension (AD) occurs in pregnancy and is also commonly seen in patients with ascites from various causes. Because the abdomen forms part of the "chest wall," the purpose of this study was to clarify the effects of AD on ventilatory mechanics. Airway pressure, four (vertical) regional pleural pressures, and abdominal pressure were measured in five anesthetized, paralyzed, and ventilated upright pigs. The effects of AD on the lung and chest wall were studied by inflating a liquid-filled balloon placed in the abdominal cavity. Respiratory system, chest wall, and lung pressure-volume (PV) relationships were measured on deflation from total lung capacity to residual volume, as well as in the tidal breathing range, before and 15 min after abdominal pressure was raised. Increasing abdominal pressure from 3 to 15 cmH2O decreased total lung capacity and functional residual capacity by approximately 40% and shifted the respiratory system and chest wall PV curves downward and to the right. Much smaller downward shifts in lung deflation curves were seen, with no change in the transdiaphragmatic PV relationship. All regional pleural pressures increased (became less negative) and, in the dependent region, approached 0 cmH2O at functional residual capacity. Tidal compliances of the respiratory system, chest wall, and lung were decreased 43, 42, and 48%, respectively. AD markedly alters respiratory system mechanics primarily by "stiffening" the diaphragm/abdomen part of the chest wall and secondarily by restricting lung expansion, thus shifting the lung PV curve as seen after chest strapping. The less negative pleural pressures in the dependent lung regions suggest that nonuniformities of ventilation could also be accentuated and gas exchange impaired by AD.


2001 ◽  
Vol 90 (4) ◽  
pp. 1441-1446 ◽  
Author(s):  
Mario Filippelli ◽  
Riccardo Pellegrino ◽  
Iacopo Iandelli ◽  
Gianni Misuri ◽  
Joseph R. Rodarte ◽  
...  

Lung and chest wall mechanics were studied during fits of laughter in 11 normal subjects. Laughing was naturally induced by showing clips of the funniest scenes from a movie by Roberto Benigni. Chest wall volume was measured by using a three-dimensional optoelectronic plethysmography and was partitioned into upper thorax, lower thorax, and abdominal compartments. Esophageal (Pes) and gastric (Pga) pressures were measured in seven subjects. All fits of laughter were characterized by a sudden occurrence of repetitive expiratory efforts at an average frequency of 4.6 ± 1.1 Hz, which led to a final drop in functional residual capacity (FRC) by 1.55 ± 0.40 liter ( P < 0.001). All compartments similarly contributed to the decrease of lung volumes. The average duration of the fits of laughter was 3.7 ± 2.2 s. Most of the events were associated with sudden increase in Pes well beyond the critical pressure necessary to generate maximum expiratory flow at a given lung volume. Pga increased more than Pes at the end of the expiratory efforts by an average of 27 ± 7 cmH2O. Transdiaphragmatic pressure (Pdi) at FRC and at 10% and 20% control forced vital capacity below FRC was significantly higher than Pdi at the same absolute lung volumes during a relaxed maneuver at rest ( P < 0.001). We conclude that fits of laughter consistently lead to sudden and substantial decrease in lung volume in all respiratory compartments and remarkable dynamic compression of the airways. Further mechanical stress would have applied to all the organs located in the thoracic cavity if the diaphragm had not actively prevented part of the increase in abdominal pressure from being transmitted to the chest wall cavity.


1993 ◽  
Vol 74 (5) ◽  
pp. 2286-2293 ◽  
Author(s):  
G. M. Barnas ◽  
J. Sprung

Dependencies of the dynamic mechanical properties of the respiratory system on mean airway pressure (Paw) and the effects of tidal volume (VT) are not completely clear. We measured resistance and dynamic elastance of the total respiratory system (Rrs and Ers), lungs (RL and EL), and chest wall (Rcw and Ecw) in six healthy anesthetized paralyzed dogs during sinusoidal volume oscillations at the trachea (50–300 ml; 0.4 Hz) delivered at mean Paw from -9 to +23 cmH2O. Changes in end-expiratory lung volume, estimated with inductance plethysmographic belts, showed a typical sigmoidal relationship to mean Paw. Each dog showed the same dependencies of mechanical properties on mean Paw and VT. All elastances and resistances were minimal between 5 and 10 cmH2O mean Paw. All elastances, Rrs, and RL increased greatly with decreasing Paw below 5 cmH2O. Ers and EL increased above 10 cmH2O. Ecw, Ers, Rcw, and Rrs decreased slightly with increasing VT, but RL and EL were independent of VT. We conclude that 1) respiratory system impedance is minimal at the normal mean lung volume of supine anesthetized paralyzed dogs; 2) the dependency of RL on lung volume above functional residual capacity is dependent on VT and respiratory frequency; and 3) chest wall, but not lung, mechanical behavior is nonlinear (i.e., VT dependent) at any given lung volume.


2004 ◽  
Vol 11 (7) ◽  
pp. 499-503 ◽  
Author(s):  
I Mitrouska ◽  
M Klimathianaki ◽  
NM Siafakas

The accumulation of pleural effusion has important effects on respiratory system function. It changes the elastic equilibrium volumes of the lung and chest wall, resulting in a restrictive ventilatory effect, chest wall expansion and reduced efficiency of the inspiratory muscles. The magnitude of these alterations depends on the pleural fluid volume and the underlying disease of the respiratory system. The decrease in lung volume is associated with hypoxemia mainly due to an increase in right to left shunt. The drainage of pleural fluid results in an increase in lung volume that is considerably less than the amount of aspirated fluid, while hypoxemia is not readily reversible upon fluid aspiration.


1999 ◽  
Vol 86 (1) ◽  
pp. 16-21 ◽  
Author(s):  
T. Hirai ◽  
K. A. McKeown ◽  
R. F. M. Gomes ◽  
J. H. T. Bates

To investigate the effect of lung volume on chest wall and lung mechanics in the rats, we measured the impedance (Z) under closed- and open-chest conditions at various positive end-expiratory pressures (0–0.9 kPa) by using a computer-controlled small-animal ventilator (T. F. Schuessler and J. H. T. Bates. IEEE Trans. Biomed. Eng. 42: 860–866, 1995) that we have developed for determining accurately the respiratory Z in small animals. The Z of total respiratory system and lungs was measured with small-volume oscillations between 0.25 and 9.125 Hz. The measured Z was fitted to a model that featured a constant-phase tissue compartment (with dissipation and elastance characterized by constants G and H, respectively) and a constant airway resistance (Z. Hantos, B. Daroczy, B. Suki, S. Nagy, and J. J. Fredberg. J. Appl. Physiol. 72: 168–178, 1992). We matched the lung volume between the closed- and open-chest conditions by using the quasi-static pressure-volume relationship of the lungs to calculate Z as a function of lung volume. Resistance decreased with lung volume and was not significantly different between total respiratory system and lungs. However, G and H of the respiratory system were significantly higher than those of the lungs. We conclude that chest wall in rats has a significant influence on tissue mechanics of the total respiratory system.


1986 ◽  
Vol 60 (1) ◽  
pp. 63-70 ◽  
Author(s):  
J. Road ◽  
S. Newman ◽  
J. P. Derenne ◽  
A. Grassino

Diaphragmatic length was measured by sonomicrometry and transdiaphragmatic pressure (Pdi) by conventional latex balloons in eight dogs anesthetized with pentobarbital sodium under passive conditions and during supramaximal phrenic stimulation. The passive length-pressure relationship indicates that the crural part of the diaphragm is more compliant than the costal part. With supramaximal stimulation the costal diaphragm showed a length-pressure relationship similar in shape to in vitro length-tension curves previously described for the canine diaphragm. The crural part has a smaller pressure-length slope than the costal part in the length range from 80% of optimum muscle length (Lo) to Lo. At supine functional residual capacity (FRC) the resting length (LFRC) of the costal and crural diaphragms are not at Lo. The costal part is distended to 105% of Lo, and crural is shortened to 92% of Lo. Tidal shortening will increase the force output of costal while decreasing that of the crural diaphragm. The major forces setting the passive supine LFRC are the abdominal weight (pressure) and the elastic recoil of the lungs. The equilibrium length (resting length of excised diaphragmatic strips) was 79 +/- 3.6% LFRC for the costal diaphragm and 87 +/- 3.9% LFRC for the crural diaphragm. Similar shortening was obtained in the upright position, indicating passive diaphragmatic stretch at supine LFRC.


1998 ◽  
Vol 85 (3) ◽  
pp. 1123-1134 ◽  
Author(s):  
Jennifer Beck ◽  
Christer Sinderby ◽  
Lars Lindström ◽  
Alex Grassino

The use of esophageal recordings of the diaphragm electromyogram (EMG) signal strength to evaluate diaphragm activation during voluntary contractions in humans has recently been criticized because of a possible artifact created by changes in lung volume. Therefore, the first aim of this study was to evaluate whether there is an artifactual influence of lung volume on the strength of the diaphragm EMG during voluntary contractions. The second aim was to measure the required changes in activation for changes in lung volume at a given tension, i.e., the volume-activation relationship of the diaphragm. Healthy subjects ( n = 6) performed contractions of the diaphragm at different transdiaphragmatic pressure (Pdi) targets (range 20–160 cmH2O) while maintaining chest wall configuration constant at different lung volumes. The diaphragm EMG was recorded with a multiple-array esophageal electrode, with control of signal contamination and electrode positioning. The effects of lung volume on the EMG were studied by comparing the crural diaphragm EMG root mean square (RMS), an index of crural diaphragm activation, with an index of global diaphragm activation obtained by normalizing Pdi to the maximum Pdi at the given muscle length (Pdi/P[Formula: see text]) at the different lung volumes. We observed a direct relationship between RMS and Pdi/P[Formula: see text]independent of diaphragm length. The volume-activation relationship of the diaphragm was equally affected by changes in lung volume as the volume-Pdi relationship (60% change from functional residual capacity to total lung capacity). We conclude that the RMS of the diaphragm EMG is not artifactually influenced by lung volume and can be used as a reliable index of diaphragm activation. The volume-activation relationship can be used to infer changes in the length-tension relationship of the diaphragm at submaximal activation/contraction levels.


1987 ◽  
Vol 62 (2) ◽  
pp. 768-775 ◽  
Author(s):  
J. F. Watchko ◽  
T. A. Standaert ◽  
D. E. Woodrum

The effect of acute hypercapnia on diaphragmatic force output was studied in 6 young (4–8 days) and 6 older (16–20 days) anesthetized, spontaneously breathing piglets. Diaphragmatic force output was assessed by analysis of the transdiaphragmatic pressure (Pdi) generated during phrenic nerve stimulation. Pdi was measured under base-line conditions (50% O2–50% N2) and after 10 min of hypercapnia induced by breathing 5, 10, or 15% CO2 balanced with N2 and 50% O2. Pdi was significantly less than base line during the 10 and 15% hypercapnic conditions in the young (P less than 0.05) but not the older piglets. End-expiratory lung volume was noted to decrease during 15% CO2 hypercapnia. Force output augmentation occurred at this lower end-expiratory lung volume and was significantly greater in the older piglet compared with its younger counterpart (P less than 0.05). When the effects of lung volume on Pdi were corrected for, there was no age-related difference in the response to 15% CO2 hypercapnia. We conclude that severe hypercapnia has a depressant effect on diaphragmatic force output in both young and older piglets, and a differential augmentation in diaphragmatic force-output gain occurs at lower end-expiratory lung volume between young and older piglets, with the greater output occurring in the more mature animal.


Sign in / Sign up

Export Citation Format

Share Document