Dependence of maximal flow-volume curves on time course of preceding inspiration

1993 ◽  
Vol 75 (3) ◽  
pp. 1155-1159 ◽  
Author(s):  
E. D'Angelo ◽  
E. Prandi ◽  
J. Milic-Emili

Thirteen normal subjects, sitting in a body plethysmograph and breathing through a pneumotachograph, performed forced vital capacity maneuvers after a rapid inspiration without or with an end-inspiratory pause (maneuvers 1 and 2) and after a slow inspiration without or with an end-inspiratory pause (maneuvers 3 and 4), the pause lasting 4–6 s. Inspirations were initiated close to functional residual capacity. At all lung volumes, expiratory flow was larger with maneuver 1 than with any other maneuver and, over the upper volume range, larger with maneuver 3 than with maneuver 4, whereas it was similar for maneuvers 2 and 4. Relative to corresponding values with maneuver 4, peak expiratory flow was approximately 16 and approximately 4% larger with maneuvers 1 and 3, respectively, whereas forced expiratory volume in 1 s increased by approximately 5% only with maneuver 1. The time dependence of maximal flow-volume curves is consistent with the presence of viscoelastic elements within the respiratory system (D'Angelo et al. J. Appl. Physiol. 70: 2602–2610, 1991).

1996 ◽  
Vol 81 (1) ◽  
pp. 33-43 ◽  
Author(s):  
A. R. Elliott ◽  
G. K. Prisk ◽  
H. J. Guy ◽  
J. M. Kosonen ◽  
J. B. West

Gravity is known to influence the mechanical behavior of the lung and chest wall. However, the effect of sustained microgravity (microG) on forced expirations has not previously been reported. Tests were carried out by four subjects in both the standing and supine postures during each of seven preflight and four postflight data-collection sessions and four times during the 9 days of microG exposure on Spacelab Life Sciences-1. Compared with preflight standing values, peak expiratory flow rate (PEFR) was significantly reduced by 12.5% on flight day 2 (FD2), 11.6% on FD4, and 5.0% on FD5 but returned to standing values by FD9. The supine posture caused a 9% reduction in PEFR. Forced vital capacity and forced expired volume in 1 s were slightly reduced (approximately 3-4%) on FD2 but returned to preflight standing values on FD4 and FD5, and by FD9 both values were slightly but significantly greater than standing values. Forced vital capacity and forced expiratory volume in 1 s were both reduced in the supine posture (approximately 8-10%). Forced expiratory flows at 50% and between 25 and 75% of vital capacity did not change during microG but were reduced in the supine posture. Analysis of the maximum expiratory flow-volume curve showed that microG caused no consistent change in the curve configuration when individual in-flight days were compared with preflight standing curves, although two subjects did show a slight reduction in flows at low lung volumes from FD2 to FD9. The interpretation of the lack of change in curve configuration must be made cautiously because the lung volumes varied from day to day in flight. Therefore, the flows at absolute lung volumes in microG and preflight standing are not being compared. The supine curves showed a subtle but consistent reduction in flows at low lung volumes. The mechanism responsible for the reduction in PEFR is not clear. It could be due to a lack of physical stabilization when performing the maneuver in the absence of gravity or a transient reduction in respiratory muscle strength.


1989 ◽  
Vol 67 (2) ◽  
pp. 780-785 ◽  
Author(s):  
R. D. Fairshter ◽  
R. B. Berry ◽  
A. F. Wilson ◽  
T. Brideshead ◽  
D. Mukai

Airway hysteresis can be evaluated by comparing maximal (MEFV) and partial (PEFV) expiratory flow-volume curves. The maneuvers are often obtained from pulmonary function systems that are subject to gas-compression artifacts. Because gas-compression artifacts might differentially affect PEFV vs. MEFV curves, we simultaneously obtained MEFV and PEFV curves by use of a spirometer and a volume-displacement plethysmograph (a method not subject to gas-compression artifacts) in normal and asthmatic subjects. Plethysmographic flow rates exceeded spirometric flow rates on all MEFV and PEFV maneuvers. When maximal flow exceeded partial flow (or vice versa) in the plethysmograph, the same result was virtually always observed for spirometric measurements. Alveolar pressure (PA) was higher on MEFV than on PEFV maneuvers in asthmatic subjects; comparisons between PA (on PEFV and MEFV maneuvers) in normal subjects varied at different lung volumes. Ratios of Vmax on PEFV maneuvers to Vmax on MEFV maneuvers (Vmax-p/Vmax-c) obtained from a volume-displacement plethysmograph differ quantitatively from ratios determined in systems subject to gas-compression artifacts; qualitatively, however, failure to account for thoracic gas compression ordinarily will not influence the ability to identify airway hysteresis (or lack thereof) by use of Vmax-p-to-Vmax-c ratios.


1979 ◽  
Vol 47 (1) ◽  
pp. 8-12 ◽  
Author(s):  
C. F. O'Cain ◽  
M. J. Hensley ◽  
E. R. McFadden ◽  
R. H. Ingram

We examined the bronchoconstriction produced by airway hypocapnia in normal subjects. Maximal expiratory flow at 25% vital capacity on partial expiratory flow-volume (PEFV) curves fell during hypocapnia both on air and on an 80% helium- 20% oxygen mixture. Density dependence also fell, suggesting predominantly small airway constriction. The changes seen on PEFV curves were not found on maximal expiratory flow-volume curves, indicating the inhalation to total lung capacity substantially reversed the constriction. Pretreatment with a beta-sympathomimetic agent blocked the response, whereas atropine pretreatment did not, suggesting that hypocapnia affects airway smooth muscle directly, not via cholinergic efferents.


1989 ◽  
Vol 66 (1) ◽  
pp. 304-312 ◽  
Author(s):  
G. D. Phillips ◽  
S. T. Holgate

To investigate possible mediator interaction in asthma, the effect of inhaled leukotriene (LT) C4 on bronchoconstriction provoked by histamine and prostaglandin (PG) D2 was studied in nine asthmatic subjects. The provocation doses of histamine, PGD2, and LTC4 required to produce a 12.5% decrease in baseline forced expiratory volume in 1 s (FEV1, PD12.5) and to further this fall to 25% (PD25–12.5) were determined. On three subsequent occasions, subjects inhaled either the PD12.5 LTC4 plus vehicle or vehicle plus the PD25–12.5 of either histamine or PGD2, and FEV1 and maximal flow at 70% of vital capacity below total lung capacity after a forced partial expiratory maneuver (Vp30) followed for 45 min. From these results, predicted time-course curves for LTC4 with histamine and LTC4 with PGD2 were calculated. On two final occasions, airway caliber was followed for 45 min after inhalation of the PD12.5 LTC4 followed by the PD25–12.5 of either histamine or PGD2. During the first 9 min after LTC4-histamine and LTC4-PGD2, the decreases in airway caliber were greater than the calculated predicted response. This interaction, although small, was significant with LTC4-PGD2 for both FEV1 (P = 0.01) and Vp30 (P less than 0.05) and with LTC4-histamine for Vp30 (P less than 0.05) but not for FEV1 (P less than 0.05). We conclude that inhaled LTC4 interacts synergistically with histamine and PGD2 and that this effect, although small, may be a relevant interaction in asthma.


1995 ◽  
Vol 78 (5) ◽  
pp. 1993-1997 ◽  
Author(s):  
J. Hammer ◽  
C. J. Newth

The rapid thoracoabdominal compression (RTC) technique is commonly used in pulmonary function laboratories to assess flow-volume relationships in infants unable to produce a voluntary forced expiration maneuver. This technique produces forced expiratory flows over only a small lung volume segment (i.e., tidal volume). It has been argued that the RTC technique should be modified to measure flow-volume relationships over a larger portion of the vital capacity range to imitate the voluntary maximal forced expiratory maneuver obtained in older children and adults. We examined the effect of volume history on forced expiratory flows by generating forced expiratory flow-volume curves by RTC from well-defined inspiratory volumes delineated by inspiratory pressures of 10, 20, 30, and 40 cmH2O down to residual volume (i.e., the reference volume) in seven intubated and anesthetized infants with normal lungs [age 8.0 +/- 2.0 (SE) mo, weight 6.7 +/- 0.6 kg]. We compared maximal expiratory flows at isovolume points (25 and 10% of forced vital capacity) and found no significant differences in maximal isovolume flow rates measured from the different lung volumes. We conclude that there is no obvious need to initiate RTC from higher lung volumes if the technique is used for flow comparisons. However, compared with measurements of maximal flows at functional residual capacity by RTC from end-tidal inspiration, the initiation of RTC from a defined and reproducible inspiratory level appears to decrease the intrasubject variability of the maximal expiratory flows at low lung volumes.


1978 ◽  
Vol 54 (3) ◽  
pp. 313-321
Author(s):  
K. B. Saunders ◽  
M. Rudolf

1. We measured changes in peak expiratory flow rate (PEFR), forced expiratory volume in 1 s (FEV1·0), airways resistance (Raw), specific conductance (sGaw), residual volume (RV), functional residual capacity (FRC) and total lung capacity (TLC) in 44 patients with asthma. 2. When asthma was induced by exercise in five patients there were large changes in volumes, but these did not obscure changes in PEFR, which adequately defined the time course of the response. 3. In 70 comparisons before and after inhalation of bronchodilator drug in 33 asthmatic subjects, the responses were classified by the size of the change in lung volumes, which showed a concordant improvement, or no change, in 61 comparisons. Despite these lung volume changes, measurement of both PEFR and FEV1·0, would have detected a bronchodilator response in all but two cases. 4. In 81 comparisons in 23 subjects over time intervals varying from 1 day to 11 months, lung volumes changed in concordance with PEFR and FEV1·0 in 59. In eight of these comparisons, measurement of lung volumes would have altered our interpretation of the changes in PEFR and FEV1·0. 5. In the same 81 comparisons changes in airways resistance were concordant with changes in PEFR and FEV1·0 on 44 occasions, with minor discordant changes in 19. We could not explain the remaining 18 cases showing major discordance between these two types of measurement of airway calibre. 6. We conclude that both FEV1·0, and PEFR should be used for detection of a bronchodilator response, and that measurement of lung volumes will rarely contribute to the interpretation. Over longer periods, lung volumes should be measured if possible. We found no practical use for routine measurement of airways resistance in patients with asthma.


1990 ◽  
Vol 68 (4) ◽  
pp. 1528-1533 ◽  
Author(s):  
J. Regnard ◽  
P. Baudrillard ◽  
B. Salah ◽  
A. T. Dinh Xuan ◽  
L. Cabanes ◽  
...  

We studied changes in lung volumes and in bronchial response to methacholine chloride (MC) challenge when antishock trousers (AST) were inflated at venous occlusion pressure in healthy subjects in the standing posture, a maneuver known to shift blood toward lung vessels. On inflation of bladders isolated to lower limbs, lung volumes did not change but bronchial response to MC increased, as evidenced by a greater fall in the forced expiratory volume in 1 s (FEV1) at the highest dose of MC used compared with control without AST inflation (delta FEV1 = 0.94 +/- 0.40 vs. 0.66 +/- 0.46 liter, P less than 0.001). Full inflation of AST, i.e., lower limb and abdominal bladder inflated, significantly reduced vital capacity (P less than 0.001), functional residual capacity (P less than 0.01), and FEV1 (P less than 0.01) and enhanced the bronchial response to MC challenge compared with partial AST inflation (delta FEV1 = 1.28 +/- 0.47 liter, P less than 0.05). Because there was no significant reduction of lung volumes on partial AST inflation, the enhanced bronchial response to MC cannot be explained solely by changes in base-line lung volumes. An alternative explanation might be a congestion and/or edema of the airway wall on AST inflation. Therefore, to investigate further the mechanism of the increased bronchial response to MC, we pretreated the subjects with the inhaled alpha 1-adrenergic agonist methoxamine, which has both direct bronchoconstrictor and bronchial vasoconstrictor effects.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 61 (6) ◽  
pp. 2243-2251 ◽  
Author(s):  
C. R. O'Donnell ◽  
R. G. Castile ◽  
J. Mead

Changes in the configuration of maximum expiratory flow-volume (MEFV) curves following mild degrees of bronchodilation or bronchoconstriction were studied in five normal and five asthmatic subjects. In a volume-displacement plethysmograph, MEFV curves were performed before and after inhalation of aerosolized isoproterenol (I) or histamine (H). Five filtered MEFV curves were averaged, and slope ratio vs. volume (SR-V) plots were obtained from averaged curves. Following I, maximal flows at 75% of the vital capacity (VC) were decreased in asthmatics but not in normal subjects. Flows at 50 and 25% of the VC increased in normal subjects and asthmatics, whereas VC′s were unchanged. In asthmatics, sudden large decreases in flow (bumps) occurred at lower lung volumes following I. H reduced flows over the entire VC, with greater reductions occurring in asthmatics than in normals, particularly at low lung volumes. In asthmatics, VC was slightly reduced, and bumps in MEFV curve configuration occurred at higher lung volumes or were abolished entirely following H. A reduction in the amount of configurational detail appreciable in MEFV curves following histamine in asthmatics was best seen in SR-V plots. Following H, SR′s decreased regularly with decreasing lung volume in all the asthmatics but in none of the normals. This was the single most striking finding of this study. Mild I- and H-induced perturbations of airway bronchomotor tone produced small but consistent changes in MEFV curve configuration.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 74 (6) ◽  
pp. 2681-2686 ◽  
Author(s):  
R. Pellegrino ◽  
B. Violante ◽  
E. Crimi ◽  
V. Brusasco

To investigate whether histamine (His) and methacholine (MCh) have different effects on airways and lung parenchyma, 11 healthy subjects were given aerosol MCh until a response plateau was obtained and then two doses of His. At the plateau, forced expiratory volume in 1 s and forced expiratory flow at 40% of vital capacity from partial flow-volume curves were reduced by 19 +/- 3 (SE) and 80 +/- 4%, respectively. Aerosol His decreased forced expiratory volume in 1 s by an additional 12 +/- 1% but left partial forced expiratory flow unchanged. The bronchodilator effect of deep inhalation, as inferred from the ratio of forced expiratory flow from maximal to that from partial flow-volume curves, increased after MCh and plateaued but decreased after His. Quasi-static transpulmonary pressure-volume area determined in seven subjects was unchanged after MCh but was increased by 57 +/- 10% after His. We conclude that adding His after the response to MCh plateaued does not increase the maximal degree of bronchoconstriction but may increase parenchymal hysteresis, thus blunting the bronchodilator effect of deep inhalation. These results suggest that His and MCh have similar effects on airway smooth muscle but different effects on lung tissue properties.


2019 ◽  
Vol 68 (2) ◽  
pp. 403-411 ◽  
Author(s):  
Octavian C Ioachimescu ◽  
James K Stoller

Previous work has shown that area under the expiratory flow–volume curve (AEX) performs well in diagnosing and stratifying respiratory physiologic impairment, thereby lessening the need to measure lung volumes. Extending this prior work, the current study assesses the accuracy and utility of several geometric approximations of AEX based on standard instantaneous flows. These approximations can be used in spirometry interpretation when actual AEX measurements are not available. We analysed 15 308 spirometry tests performed on subjects who underwent same-day lung volume assessments in the Pulmonary Function Laboratory. Diagnostic performance of four AEX approximations (AEX1–4) was compared with that of actual AEX. All four computations included forced vital capacity (FVC) and various instantaneous flows: AEX1 was derived from peak expiratoryflow (PEF); AEX2 from PEF and forced expiratoryflow at 50% FVC (FEF50); AEX3 from FVC, PEF, FEF at 25% FVC (FEF25) and at 75% FVC (FEF75), while AEX4 was computed from all four flows, PEF, FEF25, FEF50 and FEF75. Mean AEX, AEX1, AEX2, AEX3 and AEX4 were 6.6, 8.3, 6.7, 6.3 and 6.1 L2/s, respectively. All four approximations had strong correlations with AEX, that is, 0.95–0.99. Differences were the smallest for AEX–AEX4, with a mean of 0.52 (95% CI 0.51 to 0.54) and a SD of 0.75 (95% CI 0.74 to 0.76) L2/s. In the absence of AEX and in addition to the usual spirometric variables used for assessing functional impairments, parameters such as AEX4 can provide reasonable approximations of AEX and become useful new tools in future interpretative strategies.


Sign in / Sign up

Export Citation Format

Share Document