Lung volumes and expiratory flow limitation during exercise in interstitial lung disease

1994 ◽  
Vol 77 (2) ◽  
pp. 963-973 ◽  
Author(s):  
D. D. Marciniuk ◽  
G. Sridhar ◽  
R. E. Clemens ◽  
T. A. Zintel ◽  
C. G. Gallagher

Lung volumes were measured at rest and during exercise by an open-circuit N2-washout technique in patients with interstitial lung disease (ILD). Exercise tidal flow-volume (F-V) curves were also compared with maximal F-V curves to investigate whether these patients demonstrated flow limitation. Seven patients underwent 4 min of constant work rate bicycle ergometer exercise at 40, 70, and 90% of their previously determined maximal work rates. End-expiratory lung volume and total lung capacity were measured at rest and near the end of each period of exercise. There was no significant change in end-expiratory lung volume or total lung capacity when resting measurements were compared with measurements at 40, 70, and 90% work rates. During exercise, expiratory flow limitation was evident in four patients who reported stopping exercise because of dyspnea. In the remaining patients who discontinued exercise because of leg fatigue, no flow limitation was evident. In all patients, the mean ratio of maximal minute ventilation to maximal ventilatory capacity (calculated from maximal F-V curves) was 67%. We conclude that lung volumes during exercise do not significantly differ from those at rest in this population and that patients with ILD may demonstrate expiratory flow limitation during exercise. Furthermore, because most patients with ILD are not breathing near their maximal ventilatory capacity at the end of exercise, we suggest that respiratory mechanics are not the primary cause of their exercise limitation.

2005 ◽  
Vol 98 (3) ◽  
pp. 817-821 ◽  
Author(s):  
Francesco G. Salerno ◽  
Riccardo Pellegrino ◽  
Gianluca Trocchio ◽  
Antonio Spanevello ◽  
Vito Brusasco ◽  
...  

The effects of breathing depth in attenuating induced bronchoconstriction were studied in 12 healthy subjects. On four separate, randomized occasions, the depth of a series of five breaths taken soon (∼1 min) after methacholine (MCh) inhalation was varied from spontaneous tidal volume to lung volumes terminating at ∼80, ∼90, and 100% of total lung capacity (TLC). Partial forced expiratory flow at 40% of control forced vital capacity (V̇part) and residual volume (RV) were measured at control and again at 2, 7, and 11 min after MCh. The decrease in V̇part and the increase in RV were significantly less when the depth of the five-breath series was progressively increased ( P < 0.001), with a linear relationship. The attenuating effects of deep breaths of any amplitude were significantly greater on RV than V̇part ( P < 0.01) and lasted as long as 11 min, despite a slight decrease with time when the end-inspiratory lung volume was 100% of TLC. In conclusion, in healthy subjects exposed to MCh, a series of breaths of different depth up to TLC caused a progressive and sustained attenuation of bronchoconstriction. The effects of the depth of the five-breath series were more evident on the RV than on V̇part, likely due to the different mechanisms that regulate airway closure and expiratory flow limitation.


2010 ◽  
Vol 108 (5) ◽  
pp. 1267-1274 ◽  
Author(s):  
Katherine E. Swain ◽  
Sara K. Rosenkranz ◽  
Bethany Beckman ◽  
Craig A. Harms

The purpose of this study was to compare the prevalence and implications of expiratory flow limitation (EFL) during exercise in boys and girls. Forty healthy, prepubescent boys (B; n = 20) and girls (G; n = 20) were tested. Subjects completed pulmonary function tests and an incremental cycle maximal oxygen uptake (V̇o2max) test. EFL was recorded at the end of each exercise stage using the % tidal volume overlap method. Ventilatory and metabolic data were recorded throughout exercise. Arterial oxygen saturation (SpO2) was determined via pulse oximetry. Body composition was determined using dual-energy X-ray absorptiometry. There were no differences ( P > 0.05) in height, weight, or body composition between boys and girls. At rest, boys had significantly higher lung volumes (total lung capacity, B = 2.6 ± 0.5 liters, G = 2.1 ± 0.5 liters) and peak expiratory flow rates (B = 3.6 ± 0.6 l/s; G = 1.6 ± 0.3 l/s). Boys also had significantly higher V̇o2max (B = 46.9 ± 5.9 ml·kg lean body mass−1·min−1, G = 41.7 ± 6.6 ml·kg lean body mass−1·min−1) and maximal ventilation (B = 49.8 ± 8.8 l/min, G = 41.2 ± 8.3 l/min) compared with girls. There were no sex differences ( P > 0.05) at V̇o2max in VE /Vco2, end-tidal Pco2, heart rate, respiratory exchange ratio, or SpO2. The prevalence (B = 19/20 vs. G = 18/20) and severity (B = 58 ± 7% vs. G = 43 ± 8% tidal volume) of EFL was not significantly different in boys compared with girls at V̇o2max. A significant relationship existed between % EFL at V̇o2max and the change in end-expiratory lung volume from rest to maximal exercise in boys ( r = 0.77) and girls ( r = 0.75). In summary, our data suggests that EFL is highly and equally prevalent in prepubescent boys and girls during heavy exercise, which led to an increased end-expiratory lung volume but not to decreases in arterial oxygen saturation.


1999 ◽  
Vol 86 (2) ◽  
pp. 611-616 ◽  
Author(s):  
Susana Mota ◽  
Pere Casan ◽  
Franchek Drobnic ◽  
Jordi Giner ◽  
Olga Ruiz ◽  
...  

In some trained athletes, maximal exercise ventilation is believed to be constrained by expiratory flow limitation (FL). Using the negative expiratory pressure method, we assessed whether FL was reached during a progressive maximal exercise test in 10 male competition cyclists. The cyclists reached an average maximal O2 consumption of 72 ml ⋅ kg−1 ⋅ min−1(range: 67–82 ml ⋅ kg−1 ⋅ min−1) and ventilation of 147 l/min (range: 122–180 l/min) (88% of preexercise maximal voluntary ventilation in 15 s). In nine subjects, FL was absent at all levels of exercise (i.e., expiratory flow increased with negative expiratory pressure over the entire tidal volume range). One subject, the oldest in the group, exhibited FL during peak exercise. The group end-expiratory lung volume (EELV) decreased during light-to-moderate exercise by 13% (range: 5–33%) of forced vital capacity but increased as maximal exercise was approached. EELV at peak exercise and at rest were not significantly different. The end-inspiratory lung volume increased progressively throughout the exercise test. The conclusions reached are as follows: 1) most well-trained young cyclists do not reach FL even during maximal exercise, and, hence, mechanical ventilatory constraint does not limit their aerobic exercise capacity, and 2) in absence of FL, EELV decreases initially but increases during heavy exercise.


Physiotherapy ◽  
2015 ◽  
Vol 101 ◽  
pp. e1121-e1122
Author(s):  
T. Ogino ◽  
K. Mase ◽  
M. Nozoe ◽  
T. Wada ◽  
Y. Uchiyama ◽  
...  

1993 ◽  
Vol 36 (3) ◽  
pp. 516-520 ◽  
Author(s):  
Jeannette D. Hoit ◽  
Nancy Pearl Solomon ◽  
Thomas J. Hixon

This investigation was designed to test the hypothesis that voice onset time (VOT) varies as a function of lung volume. Recordings were made of five men as they repeated a phrase containing stressed /pi/ syllables, beginning at total lung capacity and ending at residual volume. VOT was found to be longer at high lung volumes and shorter at low lung volumes in most cases. This finding points out the need to take lung volume into account when using VOT as an index of laryngeal behavior in both healthy individuals and those with speech disorders.


1993 ◽  
Vol 74 (5) ◽  
pp. 2552-2558 ◽  
Author(s):  
R. Pellegrino ◽  
V. Brusasco ◽  
J. R. Rodarte ◽  
T. G. Babb

To investigate the impact of expiratory flow limitation (FL) on breathing pattern and end-expiratory lung volume (EELV), we imposed a small expiratory threshold load for a few breaths during exercise in nine volunteers (29–62 yr): six were healthy and three had mild-to-moderate airflow obstruction (67–71% predicted forced expiratory volume in 1 s). Six subjects showed evidence of FL, i.e., tidal expiratory flow impinging on maximal forced expiratory flow, at one or more exercise levels. Whenever an expiratory threshold load was imposed, mean expiratory flow decreased (P < 0.02) in association with an increased expiratory time (TE; P < 0.05). When the load was imposed during non-FL conditions, TE increased less than expiratory flow decreased and EELV tended to increase. In contrast, during FL, with the load, TE increased more than expiratory flow decreased, subjects did not achieve maximal expiratory flow until a lower volume, and EELV decreased (P < 0.001). Under both FL and no-FL conditions, unloading reversed the changes associated with loading. These data indicate that the increase in EELV during exercise is linked to the occurrence of FL. We suggest that compression of airways downstream from the flow-limiting segment may elicit a reflex mechanism that influences breathing pattern by terminating expiration prematurely, thus increasing EELV.


2015 ◽  
Vol 118 (3) ◽  
pp. 255-264 ◽  
Author(s):  
Sabrina S. Wilkie ◽  
Paolo B. Dominelli ◽  
Benjamin C. Sporer ◽  
Michael S. Koehle ◽  
A. William Sheel

In this study we tested the hypothesis that inspiring a low-density gas mixture (helium-oxygen; HeO2) would minimize mechanical ventilatory constraints and preferentially increase exercise performance in females relative to males. Trained male ( n = 11, 31 yr) and female ( n = 10, 26 yr) cyclists performed an incremental cycle test to exhaustion to determine maximal aerobic capacity (V̇o2max; male = 61, female = 56 ml·kg−1·min−1). A randomized, single-blinded crossover design was used for two experimental days where subjects completed a 5-km cycling time trial breathing humidified compressed room air or HeO2 (21% O2:balance He). Subjects were instrumented with an esophageal balloon for the assessment of respiratory mechanics. During the time trial, we assessed the ability of HeO2 to alleviate mechanical ventilatory constraints in three ways: 1) expiratory flow limitation, 2) utilization of ventilatory capacity, and 3) the work of breathing. We found that HeO2 significantly reduced the work of breathing, increased the size of the maximal flow-volume envelope, and reduced the fractional utilization of the maximal ventilatory capacity equally between men and women. The primary finding of this study was that inspiring HeO2 was associated with a statistically significant performance improvement of 0.7% (3.2 s) for males and 1.5% (8.1 s) for females ( P < 0.05); however, there were no sex differences with respect to improvement in time trial performance ( P > 0.05). Our results suggest that the extent of sex-based differences in airway anatomy, work of breathing, and expiratory flow limitation is not great enough to differentially affect whole body exercise performance.


2017 ◽  
Vol 240 ◽  
pp. 26-31 ◽  
Author(s):  
Joshua R. Smith ◽  
Stephanie P. Kurti ◽  
Kayla Meskimen ◽  
Craig A. Harms

2000 ◽  
Vol 89 (4) ◽  
pp. 1591-1600 ◽  
Author(s):  
George P. Topulos ◽  
Richard E. Brown ◽  
James P. Butler

The pressure-volume (P-V) characteristics of the lung microcirculation are important determinants of the pattern of pulmonary perfusion and of red and white cell transit times. Using diffuse light scattering, we measured capillary P-V loops in seven excised perfused dog lobes at four lung volumes, from functional residual capacity (FRC) to total lung capacity (TLC), over a wide range of vascular transmural pressures (Ptm). At Ptm 5 cmH2O, specific compliance of the microvasculature was 8.6%/cmH2O near FRC, decreasing to 2.7%/cmH2O as lung volume increased to TLC. At low lung volumes, the vasculature showed signs of strain stiffening (specific compliance fell as Ptm rose), but stiffening decreased as lung volume increased and was essentially absent at TLC. The P-V loops were smooth without sharp transitions, consistent with vascular distension as the primary mode of changes in vascular volume with changes in Ptm. Hysteresis was small (0.013) at all lung volumes, suggesting that, although surface tension may set basal capillary shape, it does not strongly affect capillary compliance.


Sign in / Sign up

Export Citation Format

Share Document