Ozone toxicity in the mouse: comparison and modeling of responses in susceptible and resistant strains

1996 ◽  
Vol 80 (6) ◽  
pp. 2134-2142 ◽  
Author(s):  
W. P. Watkinson ◽  
J. W. Highfill ◽  
R. Slade ◽  
G. E. Hatch

Previous studies from this laboratory have demonstrated a concentration-related hypothermia and increases in bronchoalveolar lavage (BAL) fluid indexes of toxicity in the rat after exposure to environmentally relevant levels of ozone (O3). In similar studies with C57BL/6J (B6) and C3H/HeJ (C3) mice, other investigators have reported differential effects on BAL toxicity indexes between the two strains after O3 exposure. The present study investigated the relationship between the reported strain differences in BAL parameters in B6 and C3 mice exposed to O3 and the induced hypothermic response. Male 80-day-old mice (n = 94, 47/strain) were used for these studies. Subsets (n = 8/strain) of these animals were surgically implanted with radiotelemetry transmitters that permitted continuous monitoring of core body temperature and activity. All telemetry animals and an equal number of nontelemetry animals (n = 8/strain) were exposed to filtered air for 24 h followed by a 2-h exposure to 2 parts/million 16O3. With use of a similar protocol, groups of nontelemetry mice (n = 12/strain) were exposed to either filtered air or 2 parts/million 16O3 for 2 h. At 0 or 22 h postexposure, mice were anesthetized with halothane and intubated, and their lungs were lavaged with 37 degrees C saline. Although both strains of mice exhibited significant abrupt decreases in core body temperature on exposure to O3 and both recovered rapidly after cessation of the O3 exposure, the response of the C3 mice was more dynamic than that of the B6 mice. Similarly, both strains showed characteristic changes in biomarkers of O3 toxicity; however, the increases in BAL fluid protein and cells at 22 h postexposure were significantly greater and the percentage of neutrophils was significantly less in B6 mice than in C3 mice. It is possible that the strain differences in BAL constituents may be related to the differences in the hypothermic response.

2012 ◽  
Vol 78 (5) ◽  
pp. 607-612 ◽  
Author(s):  
Timothy M. Geiger ◽  
Sara Horst ◽  
Roberta Muldoon ◽  
Paul E. Wise ◽  
Jesse Enrenfeld ◽  
...  

The World Health Organization has set a standard of maintaining a core body temperature above 36°C in the perioperative period. The purpose of this study was to examine the relationship between both intraoperative temperature (IOT) and immediate postop core body temperature as it relates to postop complications. A retrospective analysis of a prospective database of patients who underwent an elective segmental colectomy without a stoma, for 3 diagnoses was performed. Six postoperative outcomes were examined: length of stay (LOS), placement of a nasogastric tube, return to the operating room, placement of an interventional drain, diagnosed leak, and surgical site infection (SSI). Statistics were calculated using a two-sample Wilcoxon rank-sum (Mann-Whitney) test. Seventy-nine patients met the inclusion criteria and there were no preoperative differences between the groups (those with a postop complication vs without). LOS > 9 days (36.64°C vs 35.98°C; P = 0.011) and clinical leak (37.06°C vs 35.99°C; P = 0.005) both had a statistically higher average IOT than those who did not. Patients with SSI trended to a higher IOT (36.44°C vs 35.99°C; P = 0.062). When the last IOT recorded was compared with the six outcomes, again length of stay and leak both were statistically significant ( P = 0.018, P = 0.012) showing a higher temperature related to a higher complication rate. No other complications were related to IOT, nor did postop temperature relate to complication. In our data, relatively lower IOTs were protective for LOS and clinical leaks, with a trend of lower SSI rates. Further research is needed to fully endorse or refute the absolute recommendations for core body temperature.


2017 ◽  
Vol 39 (1) ◽  
pp. 48 ◽  
Author(s):  
K. A. Descovich ◽  
S. Johnston ◽  
A. Lisle ◽  
V. Nicolson ◽  
T. Janssen ◽  
...  

The southern hairy-nosed wombat (Lasiorhinus latifrons) is a nocturnal, fossorial marsupial that has evolved a range of physiological and behavioural adaptations to its semiarid environment. This study describes long-term core body temperature (Tb) of L. latifrons in a population with opportunities for behavioural thermoregulation through burrow use. Tb was measured hourly in 12 captive L. latifrons using implanted dataloggers over a 9-month period from late winter to late autumn. Data were examined for daily patterns, seasonal changes, sex differences and the relationship with environmental conditions (ambient temperature, den temperature and relative humidity). Tb ranged from 30.9 to 38.8°C, and had a distinct nychthemeral rhythm, with peak temperatures occurring at night in line with nocturnal activity. Females had a higher mean Tb (34.9°C) than males (34.4°C). The relationship between external ambient temperature and body temperature was negative, with body temperature decreasing as ambient temperature increased. This study is an important step towards a comprehensive picture of thermoregulation in L. latifrons, which may become vulnerable in the future if environmental temperatures rise and water availability decreases.


2007 ◽  
Vol 197 (2) ◽  
pp. 263-278 ◽  
Author(s):  
Beatriz Goni-Allo ◽  
Brian Ó Mathúna ◽  
Mireia Segura ◽  
Elena Puerta ◽  
Berta Lasheras ◽  
...  

1990 ◽  
Vol 3 (2) ◽  
pp. 52-55 ◽  
Author(s):  
Maureen Giuffre ◽  
Tanya Heidenreich ◽  
Patricia Carney-Gersten ◽  
James A. Dorsch ◽  
Eric Heidenreich

Sign in / Sign up

Export Citation Format

Share Document