Visual system maldevelopment disrupts extraocular muscle-specific myosin expression

1998 ◽  
Vol 85 (2) ◽  
pp. 584-592 ◽  
Author(s):  
Jennifer K. Brueckner ◽  
John D. Porter

The genetic and epigenetic influences that are responsible for the establishment and maintenance of the unique phenotype of the extraocular muscles (EOMs) are poorly understood. A role for visual cues in shaping EOM maturation was assessed in rats by using two visual deprivation paradigms, dark rearing and monocular deprivation. Isoforms of the contractile protein myosin heavy chain (MHC) were used as an index of phenotypic change in developing and adult EOMs after these visual insults. In rats that were dark reared during the visual critical period, the proportion of EOM fibers expressing either fast or slow MHCs was decreased significantly. EOM-specific myosin was also sensitive to dark rearing during the critical period, as evidenced by a significant decrease in its mRNA in EOMs from these rats. EOM-specific MHC did not change in either dark-reared rats returned to normally illuminated conditions or in adult rats denied visual experience for a similar time period. These data suggest that there may be a critical period during development when alterations in visual activity have significant consequences for the eye muscle phenotype. In contrast to dark rearing, monocular deprivation had a minimal effect on expression of the typical myosin isoforms and no effect on EOM-specific myosin expression. Collectively, these data confirm the hypothesis that visual input to the oculomotor system during development modulates EOM-specific MHC expression.

Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Costantino Schiavi

The role played by the extraocular muscles (EOMs) in the etiology of concomitant infantile strabismus is still debated and it has not yet definitively established if the sensory anomalies in concomitant strabismus are a consequence or a primary cause of the deviation. The commonest theory supposes that most strabismus results from abnormal innervation of the EOMs, but the cause of this dysfunction and its origin, whether central or peripheral, are still unknown. The interaction between sensory factors and innervational factors, that is, esotonus, accommodation, convergence, divergence, and vestibular reflexes in visually immature infants with family predisposition, is suspected to create conditions that prevent binocular alignment from stabilizing and strengthening. Some role in the onset of fixation instability and infantile strabismus could be played by the feedback control of eye movements and by dysfunction of eye muscle proprioception during the critical period of development of the visual sensory system. A possible role in the onset, maintenance, or worsening of the deviation of abnormalities of muscle force which have their clinical equivalent in eye muscle overaction and underaction has been investigated under either isometric or isotonic conditions, and in essence no significant anomalies of muscle force have been found in concomitant strabismus.


1999 ◽  
Vol 81 (1) ◽  
pp. 121-128 ◽  
Author(s):  
Eric S. Guire ◽  
Marvin E. Lickey ◽  
Barbara Gordon

Guire, Eric S., Marvin E. Lickey, and Barbara Gordon. Critical period for the monocular deprivation effect in rats: assessment with sweep visually evoked potentials. J. Neurophysiol. 81: 121–128, 1999. Rats and mice are the species most frequently used for cellular and biochemical studies of plasticity, but only a few studies have examined developmentally regulated visual plasticity in these species. Here we report a study of the critical period for monocular deprivation in Long-Evans rats in which visual pattern sweep evoked potentials (sweep VEP) was used. Successful recording of sweep VEPs depended on establishing a stable light plane of anesthesia. We found a mixture of halothane and NO2 to be suitable. During a single trial lasting 10 s, anesthetized rats ( n = 28) viewed a sinusoidal contrast grating (spatial frequency of 0.13 cycles/deg) that reversed phase at 3 Hz. During the trial, the grating contrast increased logarithmically from 1 to 70%. Extracellular recording pipettes were placed bilaterally in layers II/III of the binocular regions of primary visual cortex. Stimulating the right and left eye on alternate trials, sweep VEP amplitudes were collected for 30 trials from each eye. In monocularly deprived animals, the right eyelid had been sutured for 5 days before recording. Age at suture varied from P19 to P86. In 12 of 13 rats sutured between P19 and P50, the crossed response from the deprived eye was smaller than the crossed response from the nondeprived eye. The same relation prevailed for the uncrossed responses in 11 of 13 animals. There was no significant monocular deprivation effect in animals sutured between P55 and P86 ( n = 9). Dark rearing until approximately P90 followed by 5 days of eyelid suture resulted in a strong monocular deprivation effect in both crossed and uncrossed pathways ( n = 3). There was little effect of dark rearing alone on the size the sweep VEPs ( n = 3). The critical period reported here lasts at least 2 wk longer than reported for rats by Fagliolini et al. and for mice by Gordon and Stryker. Both previous studies used single unit recording rather than the sweep VEP method.


2001 ◽  
Vol 18 (5) ◽  
pp. 811-820 ◽  
Author(s):  
CHRISTOPHER J. BEAVER ◽  
QINGHUA JI ◽  
NIGEL W. DAW

We compared the effect of 2 days of monocular vision on the ocular dominance of cells in the visual cortex of light-reared kittens with the effect in dark-reared kittens at 6, 9, and 14 weeks of age, and analyzed the results by layer. The size of the ocular-dominance shift declined with age in all layers in light-reared animals. There was not a large change in the ocular-dominance shift with age in dark-reared animals in any layer, suggesting that dark rearing largely keeps the cortex in the immature 6-week state until 14 weeks or longer, although there was a slight decrease in layers II, III, and IV, and a slight increase in layers V and VI. At 14 weeks, the difference between light- and dark-reared animals was smallest in layer IV, larger in layers II/III, and largest in layers V/VI, suggesting that dark rearing has a large effect on intracortical synapses and a small effect on geniculocortical synapses. There was a significant ocular-dominance shift in layer IV at 14 weeks of age in both light- animals and dark-reared animals, showing that the critical period for ocular-dominance plasticity is not ended at this age. While the ocular-dominance shift after 26 h of monocular deprivation in 6-week animals was similar in light- and dark-reared animals, after 14 h it was smaller in dark-reared animals, showing that ocular-dominance changes occur more slowly in dark-reared animals at this age, in agreement with Mower (1991). Increases in selectivity for axis of movement after 26 h of monocular vision were seen in dark-reared animals at 6 weeks of age, but not at 9 or 14 weeks of age, showing that the critical period for axial selectivity ends earlier than the critical period for ocular dominance in dark-reared animals, as it does in light-reared animals.


1992 ◽  
Vol 67 (1) ◽  
pp. 197-202 ◽  
Author(s):  
N. W. Daw ◽  
K. Fox ◽  
H. Sato ◽  
D. Czepita

1. Cats were monocularly deprived for 3 mo starting at 8-9 mo, 12 mo, 15 mo, and several years of age. Single cells were recorded in both visual cortexes of each cat, and the ocular dominance and layer determined for each cell. Ocular dominance histograms were then constructed for layers II/III, IV, and V/VI for each group of animals. 2. There was a statistically significant shift in the ocular dominance for cells in layers II/III and V/VI for the animals deprived between 8-9 and 11-12 mo of age. There was a small but not statistically significant shift for cells in layer IV from the animals deprived between 8-9 and 11-12 mo of age, and for cells in layers V/VI from the animals deprived between 15 and 18 mo of age. There was no noticeable shift in ocular dominance for any other layers in any other group of animals. 3. We conclude that the critical period for monocular deprivation is finally over at approximately 1 yr of age for extragranular layers (layers II, III, V, and VI) in visual cortex of the cat.


2018 ◽  
Vol 35 ◽  
Author(s):  
TAKAO K. HENSCH ◽  
ELIZABETH M. QUINLAN

AbstractThe shift in ocular dominance (OD) of binocular neurons induced by monocular deprivation is the canonical model of synaptic plasticity confined to a postnatal critical period. Developmental constraints on this plasticity not only lend stability to the mature visual cortical circuitry but also impede the ability to recover from amblyopia beyond an early window. Advances with mouse models utilizing the power of molecular, genetic, and imaging tools are beginning to unravel the circuit, cellular, and molecular mechanisms controlling the onset and closure of the critical periods of plasticity in the primary visual cortex (V1). Emerging evidence suggests that mechanisms enabling plasticity in juveniles are not simply lost with age but rather that plasticity is actively constrained by the developmental up-regulation of molecular ‘brakes’. Lifting these brakes enhances plasticity in the adult visual cortex, and can be harnessed to promote recovery from amblyopia. The reactivation of plasticity by experimental manipulations has revised the idea that robust OD plasticity is limited to early postnatal development. Here, we discuss recent insights into the neurobiology of the initiation and termination of critical periods and how our increasingly mechanistic understanding of these processes can be leveraged toward improved clinical treatment of adult amblyopia.


1994 ◽  
Vol 34 (6) ◽  
pp. 709-720 ◽  
Author(s):  
Michela Fagiolini ◽  
Tommaso Pizzorusso ◽  
Nicoletta Berardi ◽  
Luciano Domenici ◽  
Lamberto Maffei

2019 ◽  
Vol 40 (3) ◽  
pp. 585-604 ◽  
Author(s):  
Carey Y.L. Huh ◽  
Karim Abdelaal ◽  
Kirstie J. Salinas ◽  
Diyue Gu ◽  
Jack Zeitoun ◽  
...  

2002 ◽  
Vol 88 (4) ◽  
pp. 1933-1940 ◽  
Author(s):  
Chris J. Beaver ◽  
Quentin S. Fischer ◽  
Qinghua Ji ◽  
Nigel W. Daw

We have previously shown that the protein kinase A (PKA) inhibitor, 8-chloroadenosine-3′,5′–monophosphorothioate (Rp-8-Cl-cAMPS), abolishes ocular dominance plasticity in the cat visual cortex. Here we investigate the effect of this inhibitor on orientation selectivity. The inhibitor reduces orientation selectivity in monocularly deprived animals but not in normal animals. In other words, PKA inhibitors by themselves do not affect orientation selectivity, nor does monocular deprivation by itself, but monocular deprivation in combination with a PKA inhibitor does affect orientation selectivity. This result is found for the receptive fields in both deprived and nondeprived eyes. Although there is a tendency for the orientation selectivity in the nondeprived eye to be higher than the orientation selectivity in the deprived eye, the orientation selectivity in both eyes is considerably less than normal. The result is striking in animals at 4 wk of age. The effect of the monocular deprivation on orientation selectivity is reduced at 6 wk of age and absent at 9 wk of age, while the effect on ocular dominance shifts is less changed in agreement with previous results showing that the critical period for orientation/direction selectivity ends earlier than the critical period for ocular dominance. We conclude that closure of one eye in combination with inhibition of PKA reduces orientation selectivity during the period that orientation selectivity is still mutable and that the reduction in orientation selectivity is transferred to the nondeprived eye.


Seven extraocular eye muscles are described in Octopus vulgaris. There are three powerful recti muscles that produce linear movements and four oblique muscles producing rotation. Some of these oblique muscles are very thin sheets passing halfway round the eyeball. The eye muscles are controlled by seven nerves, but several of these innervate more than one muscle. Stimulation of the individual nerves produces the linear and rotatory movements, or both, to be expected from the morphological organization of the muscles they innervate. Two of the nerves run only to extraocular eye muscles, the other five contain additional fibres for the iris, chromatophores or skin. Cobalt filling of the central ends of the eye muscle nerves showed that all have fibres originating in the ipsilateral anterior lateral pedal lobe which is the oculomotor centre. The two nerves whose stim ulation gave expansion of the chrom atophores of the iris were shown to contain fibres with somata in the ipsilateral anterior chromatophore lobe. Two nerves gave constriction of the pupil and proved to contain fibres with somata in an area between the posterior pedal and magnocellular lobes, demonstrating the position of a pupillary control centre. Stimulation of one nerve gave dilation of the pupil but the origin of the relevant cells remains unclear. Cobalt filling of the central ends of the macula and crista nerves of the statocyst showed the destinations of their afferent fibres in many parts of the brain, including the oculomotor centre and higher motor centres of the basal and peduncle lobes. In addition, many somata of efferent fibres to the statocyst were filled in the oculomotor centre, in the posterior lateral pedal lobe, and in the posterior pedal and magnocellular lobes. The statocyst-oculomotor system of Octopus thus includes two pathways from the statocyst equilibrium receptor organs to the motoneurons of the eyes: one direct pathway, and another indirect path via higher integrative centres where visual information about movement is combined with that coming from the statocysts. This situation points to a rem arkable convergence between the Octopus statocyst-oculomotor system and the vestibulo-ocular system of vertebrates.


Sign in / Sign up

Export Citation Format

Share Document