Effect of heating on vascular reactivity in rat mesenteric arteries

1998 ◽  
Vol 85 (2) ◽  
pp. 701-708 ◽  
Author(s):  
Michael P. Massett ◽  
Stephen J. Lewis ◽  
James N. Bates ◽  
Kevin C. Kregel

Vasoconstriction in the viscera is one of the primary cardiovascular adjustments to heating. Local temperature can influence vascular responsiveness to catecholamines and sympathetic nerve activity. Therefore, we hypothesized that heating would alter vascular reactivity in rat mesenteric arteries. Concentration-response curves to norepinephrine, phenylephrine, potassium chloride (KCl), calcium, acetylcholine, and sodium nitroprusside were obtained in vascular ring segments from rat mesenteric arteries at 37 and 41°C. In some rings, basal tension increased slightly during heating. Heating to 41°C did not alter the contractile responses to norepinephrine in endothelium-intact or -denuded rings but augmented the responses to KCl and calcium in endothelium-intact rings. The potentiating effect of heating on the responses to KCl and calcium was eliminated after endothelium removal. In contrast, the relaxant responses to acetylcholine and sodium nitroprusside were significantly attenuated at 41°C. Collectively, these results demonstrate that heating alters vascular reactivity in rat mesenteric arteries. Furthermore, these data imply that heating reduces the ability of vascular smooth muscle to relax, possibly due to a decrease in sensitivity to nitric oxide.

2016 ◽  
Vol 76 (2) ◽  
pp. 500-505
Author(s):  
F. A. Moraga ◽  
N. Urriola-Urriola

Abstract Previous studies performed in intertidal fish (Girella laevifrons),as well as marine fish (Isacia conceptionis), showed that acetylcholine (ACh) produced contractions mediated by cyclooxygenases that were dependent on the area and potency of contraction in several arterial vessels. Given that the role of nitric oxide is poorly understood in fish, the objective of our study was to evaluate the role of nitric oxide in branchial afferent (ABA), branchial efferent (ABE), dorsal (DA) and mesenteric (MA) arterial vessels from both Girella laevifrons and Isacia conceptionis. We studied afferent and efferent branchial, dorsal and mesenteric arteries that were dissected from 6 juvenile specimens. Isometric tension studies were done using dose response curves (DRC) for Ach (10–13 to 10–3 M) and blockade with L-NAME (10–5 M), and DRC for sodium nitroprusside (SNP, a donor of NO). L-NAME produced an attenuation of the contractile response in the dorsal, afferent and efferent branchial arteries and a potentiation of the contraction in the MA. SNP caused 70% dilation in the mesenteric artery and 40% in the dorsal artery. Our results suggest that Ach promotes precarious dilatation in MA mediated by NO; data that is supported by the use of sodium nitroprusside. In contrast, in the vessels DA, ABA and EBA our results support that the pathway Ach-NO-relaxation is absent in both species.


1994 ◽  
Vol 77 (3) ◽  
pp. 1142-1147 ◽  
Author(s):  
K. Stuart-Smith ◽  
T. C. Bynoe ◽  
K. S. Lindeman ◽  
C. A. Hirshman

Nitrovasodilators and nitric oxide relax airway smooth muscle. The mechanism by which nitrovasodilators are thought to act is by release of nitric oxide, but the importance of nitric oxide in nitrovasodilator-induced airway smooth muscle relaxation is unclear. The aim of this study was to compare the relaxing effects of nitric oxide itself with those of nitrovasodilators in porcine tracheal muscle and intrapulmonary airways and to investigate the mechanisms involved. Strips of porcine tracheal smooth muscle, rings of bronchi, and strips of bronchi from the same animal were suspended in organ chambers in modified Krebs Ringer solution (95% O2–5% CO2, 37 degrees C). Tissues were contracted with carbachol, and concentration-response curves to nitric oxide, sodium nitroprusside, and SIN-1 (an active metabolite of molsidomine) were obtained. All tissues relaxed to sodium nitroprusside, SIN-1, and nitric oxide. The relaxation to nitric oxide but not to SIN-1 or sodium nitroprusside was inhibited by methylene blue. Tissues pretreated with methylene blue that failed to relax to nitric oxide were, however, relaxed by sodium nitroprusside. These results demonstrate that nitrovasodilators relax airways by a mechanism other than by or in addition to the release of nitric oxide.


1993 ◽  
Vol 265 (3) ◽  
pp. H943-H948 ◽  
Author(s):  
A. Yaghi ◽  
N. A. Paterson ◽  
D. G. McCormack

Chronic Pseudomonas pneumonia is associated with decreased acute hypoxic pulmonary vasoconstriction. However, it is not known whether this is a result of a generalized reduction in contractile responsiveness. We therefore examined the effect of chronic Pseudomonas pneumonia on in vitro pulmonary vascular responsiveness to agonists. We then investigated the role of nitric oxide (NO) in the altered pulmonary vascular contractility. Control rats or rats infected with Pseudomonas (pneumonia) were killed, and small intrapulmonary arteries (100-200 microns effective lumen radius) were removed. In the pneumonia group, arteries were harvested from the pneumonic area of the lung. Vascular responsiveness was assessed in vitro by obtaining cumulative dose-response curves to contractile agonists [phenylephrine (PE), 5-hydroxytryptamine (5-HT), prostaglandin F2 alpha (PGF2 alpha), and KCl]. KCL-induced (voltage-operated) contractions were not significantly depressed in small pulmonary arteries from pneumonic lungs, suggesting that the smooth muscle contractile apparatus in these arteries was preserved. Contractile responses to the three receptor-operated agonists (PE, 5-HT, and PGF2 alpha) were significantly depressed in arteries subserving the pneumonic lobe of infected rats. NG-monomethyl-L-arginine, which blocks the synthesis of NO, caused a shift toward the left in the dose-contraction curves to PE, PGF2 alpha, and 5-HT in vessels from the sterile control lungs, but it had little effect on arteries from the pneumonic lungs. Chronic Pseudomonas pneumonia is associated with depressed pulmonary vascular contractility in vitro, particularly affecting the receptor-mediated contractile responses. Excessive NO release does not contribute to this attenuated vascular contractility.(ABSTRACT TRUNCATED AT 250 WORDS)


2009 ◽  
Vol 296 (1) ◽  
pp. H195-H201 ◽  
Author(s):  
Taiki Kida ◽  
Takahisa Murata ◽  
Masatoshi Hori ◽  
Hiroshi Ozaki

Farnesoid X receptor (FXR), a member of the nuclear receptor superfamily that is highly expressed in enterohepatic tissue, is implicated in bile acid, lipid, and glucose metabolisms. Although recent studies showed that FXR is also expressed in vascular endothelial cells and smooth muscle cells, its physiological and/or pathological roles in vasculature tissue remain unknown. The aim of this study is to examine the chronic effect of synthetic FXR agonist GW4064 on vascular contraction and endothelium-dependent relaxation using tissue culture procedure. In cultured rabbit mesenteric arteries, the treatment with 0.1–10 μM GW4064 for 7 days did not influence vascular contractility induced by high K+(15–65 mM), norepinephrine (0.1–100 μM), and endothelin-1 (0.1–100 nM). However, the chronic treatment with GW4064 (1–10 μM for 7 days) dose dependently impaired endothelium-dependent relaxation induced by substance P (0.1–30 nM). In hematoxylin-eosin cross sectioning and en face immunostaining, GW4064 had no effects on the morphology of endothelial and smooth muscle cells. In endothelium-denuded arteries treated with GW4064 (1–10 μM) for 7 days, 3 nM–100 μM sodium nitroprusside-induced vasorelaxation, but not membrane-permeable cGMP analog 8-bromoguanosine-cGMP (8-Br-cGMP; 1–100 μM)-induced vasorelaxation, was significantly impaired. In these GW4064-treated arteries, 1 μM sodium nitroprusside-induced intracellular cGMP elevations were impaired. In RT-PCR, any changes were detected in mRNA expression level of α1- and β1-subunit of soluble guanylyl cyclase. These results suggest that chronic stimulation of FXR impairs endothelium-dependent relaxation, which is due to decreased sensitivity of smooth muscle cells to nitric oxide.


1989 ◽  
Vol 67 (1) ◽  
pp. 250-255 ◽  
Author(s):  
J. P. Fluckiger ◽  
G. Gremaud ◽  
B. Waeber ◽  
A. Kulik ◽  
A. Ichino ◽  
...  

A new system was developed in our laboratory to continuously monitor intra-arterial pressure, heart rate, and sympathetic nerve activity in unanesthetized rats. The animals were prepared 24 h before the start of the experiments. Sympathoneural traffic was measured at the level of splanchnic nerve. The amplitude of the spikes recorded at this level was utilized to express sympathetic nerve activity. The amplitude of the residual electroneurogram signal present 30 min after the rats were killed was 32 +/- 2 mV (mean +/- SE; n = 11). For analysis, these background values were subtracted from values determined in vivo. The nerve we studied contains postganglionic fibers, since electrical activity decreased in response to ganglionic blockade with pentolinium (1.25 mg/min iv for 4 min). The amplitude of spikes fell by 43 +/- 4% (n = 4). Sympathetic nerve activity was highly reproducible at a 24-h interval (104 +/- 26 vs. 111 +/- 27 mV for the amplitude of spikes; n = 11). Dose-response curves to the alpha 1-stimulant methoxamine and to bradykinin were established in four rats. The increase in blood pressure induced by methoxamine caused a dose-dependent fall in sympathetic nerve activity, whereas the blood pressure reduction resulting from bradykinin was associated with a dose-dependent activation of sympathetic drive. These data therefore indicate that it is possible with out system to accurately measure sympathetic nerve activity in the awake rat, together with intra-arterial pressure and heart rate.


1999 ◽  
Vol 277 (1) ◽  
pp. H8-H14 ◽  
Author(s):  
Yoshihide Fujisawa ◽  
Naoko Mori ◽  
Kouichi Yube ◽  
Hiroshi Miyanaka ◽  
Akira Miyatake ◽  
...  

The effect of inhibition of nitric oxide (NO) synthesis on the responses of blood pressure (BP), heart rate (HR), and renal sympathetic nerve activity (RSNA) during hemorrhaging was examined with the use of an NO synthase inhibitor, NG-nitro-l-arginine methyl ester (l-NAME), in conscious rats. In the 0.9% saline group, hemorrhage (10 ml/kg body wt) did not alter BP but significantly increased HR and RSNA by 88 ± 12 beats/min and 67 ± 12%, respectively. Intravenous infusion of l-NAME (50 μg ⋅ kg−1⋅ min−1) significantly attenuated these tachycardic and sympathoexcitatory responses to hemorrhage (14 ± 7 beats/min and 26 ± 12%, respectively). Pretreatment ofl-arginine (87 mg/kg) recovered the attenuation of HR and RSNA responses induced byl-NAME (92 ± 6 beats/min and 64 ± 10%, respectively).l-NAME by itself did not alter the baroreceptor reflex control of HR and RSNA. Hemorrhage increased the plasma vasopressin concentration, and its increment in thel-NAME-treated group was significantly higher than that in the 0.9% saline group. Pretreatment with the vascular arginine vasopressin V1-receptor antagonist OPC-21268 (5 mg/kg) recovered the attenuation of RSNA response induced byl-NAME (54 ± 7%). These results indicate that NO modulated HR and RSNA responses to hemorrhage but did not directly affect the baroreceptor reflex arch. It can be assumed that NO modulated the baroreflex function by altering the secretion of vasopressin induced by hemorrhage.


2009 ◽  
Vol 296 (4) ◽  
pp. H1058-H1068 ◽  
Author(s):  
Tomoko K. Ichinose ◽  
Donal S. O'Leary ◽  
Tadeusz J. Scislo

The role of nucleus of solitary tract (NTS) A2a adenosine receptors in baroreflex mechanisms is controversial. Stimulation of these receptors releases glutamate within the NTS and elicits baroreflex-like decreases in mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas inhibition of these receptors attenuates HR baroreflex responses. In contrast, stimulation of NTS A2a adenosine receptors increases preganglionic adrenal sympathetic nerve activity (pre-ASNA), and the depressor and sympathoinhibitory responses are not markedly affected by sinoaortic denervation and blockade of NTS glutamatergic transmission. To elucidate the role of NTS A2a adenosine receptors in baroreflex function, we compared full baroreflex stimulus-response curves for HR, RSNA, and pre-ASNA (intravenous nitroprusside/phenylephrine) before and after bilateral NTS microinjections of selective adenosine A2a receptor agonist (CGS-21680; 2.0, 20 pmol/50 nl), selective A2a receptor antagonist (ZM-241385; 40 pmol/100 nl), and nonselective A1 + A2a receptor antagonist (8-SPT; 1 nmol/100 nl) in urethane/α-chloralose anesthetized rats. Activation of A2a receptors decreased the range, upper plateau, and gain of baroreflex-response curves for RSNA, whereas these parameters all increased for pre-ASNA, consistent with direct effects of the agonist on regional sympathetic activity. However, no resetting of baroreflex-response curves along the MAP axis occurred despite the marked decreases in baseline MAP. The antagonists had no marked effects on baseline variables or baroreflex-response functions. We conclude that the activation of NTS A2a adenosine receptors differentially alters baroreflex control of HR, RSNA, and pre-ASNA mostly via non-baroreflex mechanism(s), and these receptors have virtually no tonic action on baroreflex control of these sympathetic outputs.


2000 ◽  
Vol 279 (2) ◽  
pp. H484-H491 ◽  
Author(s):  
Bryan A. Sauls ◽  
Matthew A. Boegehold

Endothelium-derived nitric oxide (NO) attenuates arteriolar constriction in the rat small intestine during periods of increased sympathetic nerve activity. This study was undertaken to test the hypothesis that a flow-dependent fall in arteriolar wall Po 2 serves as the stimulus for endothelial NO release under these conditions. Sympathetic nerve stimulation at 3–16 Hz induced frequency-dependent arteriolar constriction, with arteriolar wall O2 tension (Po 2) falling from 67 ± 3 mmHg to as low as 41 ± 6 mmHg. Arteriolar responses to nerve stimulation were enhanced after inhibition of NO synthase with N G-monomethyl-l-arginine (l-NMMA). Under a high-O2 (20%) superfusate, the fall in wall Po 2 was significantly attenuated, arteriolar constrictions were increased by 57 ± 9 to 66 ± 12%, and these responses were no longer sensitive tol-NMMA. The high-O2 superfusate had no effect on vascular smooth muscle responsiveness to NO (as judged by arteriolar responses to sodium nitroprusside) or on arteriolar wall oxidant activity (as determined by the reduction of tetranitroblue tetrazolium dye). These results indicate that a flow-dependent fall in arteriolar wall Po 2 may serve as a stimulus for the release of endothelium-derived NO during periods of increased sympathetic nerve activity.


2001 ◽  
Vol 281 (2) ◽  
pp. H975-H980 ◽  
Author(s):  
Hui Xu ◽  
Gregory D. Fink ◽  
Alex Chen ◽  
Stephanie Watts ◽  
James J. Galligan

The role of the sympathetic nervous system in 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl (tempol)-induced cardiovascular responses in urethane-anesthetized, normotensive rats was evaluated. Tempol caused dose-dependent (30–300 μmol/kg iv) decreases in renal sympathetic nerve activity (RSNA), mean arterial blood pressure (MAP), and heart rate (HR). Similar responses were obtained after sinoaortic denervation and cervical vagotomy. These responses were not blocked following treatment with the nitric oxide synthase inhibitor N G-nitro-l-arginine (2.6 mg · kg−1 · min−1 iv for 5 min) or the α2-adrenergic receptor antagonist idazoxan (0.3 mg/kg iv bolus). Idazoxan blocked the effects of clonidine (10 μg/kg iv) on HR, MAP, and RSNA. Hexamethonium (30 mg/kg iv) inhibited RSNA, and tempol did not decrease RSNA after hexamethonium. The effects of tempol on HR and MAP were reduced by hexamethonium. In conclusion, depressor responses caused by tempol are mediated, partly, by sympathoinhibition in urethane-anesthetized, normotensive rats. Nitric oxide does not contribute to this response, and the sympathoinhibitory effect of tempol is not mediated via α2-adrenergic receptors. Finally, tempol directly decreases HR, which may contribute to the MAP decrease.


Sign in / Sign up

Export Citation Format

Share Document