scholarly journals Activation of NTS A2a adenosine receptors differentially resets baroreflex control of renal vs. adrenal sympathetic nerve activity

2009 ◽  
Vol 296 (4) ◽  
pp. H1058-H1068 ◽  
Author(s):  
Tomoko K. Ichinose ◽  
Donal S. O'Leary ◽  
Tadeusz J. Scislo

The role of nucleus of solitary tract (NTS) A2a adenosine receptors in baroreflex mechanisms is controversial. Stimulation of these receptors releases glutamate within the NTS and elicits baroreflex-like decreases in mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas inhibition of these receptors attenuates HR baroreflex responses. In contrast, stimulation of NTS A2a adenosine receptors increases preganglionic adrenal sympathetic nerve activity (pre-ASNA), and the depressor and sympathoinhibitory responses are not markedly affected by sinoaortic denervation and blockade of NTS glutamatergic transmission. To elucidate the role of NTS A2a adenosine receptors in baroreflex function, we compared full baroreflex stimulus-response curves for HR, RSNA, and pre-ASNA (intravenous nitroprusside/phenylephrine) before and after bilateral NTS microinjections of selective adenosine A2a receptor agonist (CGS-21680; 2.0, 20 pmol/50 nl), selective A2a receptor antagonist (ZM-241385; 40 pmol/100 nl), and nonselective A1 + A2a receptor antagonist (8-SPT; 1 nmol/100 nl) in urethane/α-chloralose anesthetized rats. Activation of A2a receptors decreased the range, upper plateau, and gain of baroreflex-response curves for RSNA, whereas these parameters all increased for pre-ASNA, consistent with direct effects of the agonist on regional sympathetic activity. However, no resetting of baroreflex-response curves along the MAP axis occurred despite the marked decreases in baseline MAP. The antagonists had no marked effects on baseline variables or baroreflex-response functions. We conclude that the activation of NTS A2a adenosine receptors differentially alters baroreflex control of HR, RSNA, and pre-ASNA mostly via non-baroreflex mechanism(s), and these receptors have virtually no tonic action on baroreflex control of these sympathetic outputs.

1998 ◽  
Vol 275 (4) ◽  
pp. R995-R1002 ◽  
Author(s):  
Tadeusz J. Scislo ◽  
Robert A. Augustyniak ◽  
Donal S. O’Leary

Lumbar (LSNA), renal (RSNA), or adrenal sympathetic nerve activity (ASNA) is most commonly used as an index of sympathetic nerve activity in investigations of arterial baroreflex control in the rat. Although differential regulation of sympathetic outputs to different organs has been extensively studied, no direct and simultaneous comparisons of the full range of baroreflex reactivity have been described for these sympathetic outputs. Therefore, we compared steady-state sigmoidal baroreflex stimulus-response curves (via phenylephrine-nitroprusside infusion) for RSNA recorded simultaneously with LSNA or ASNA in urethan-chloralose-anesthetized male Sprague-Dawley rats. Characteristics of the baroreflex curves differed significantly between all three sympathetic outputs. ASNA exhibited the greatest range of baroreflex regulation, the highest upper level of activity, and the widest distribution of the gain over a broad range of mean arterial pressure (MAP). RSNA exhibited greater gain than LSNA. LSNA showed the smallest range and maximal inhibition in comparison to other sympathetic outputs. However, all three nerves responded similarly to baroreflex stimulation and unloading in the range in MAP close to the operating point. We conclude that baroreflex regulation of sympathetic activity shows wide regional variability in gain, range, and maximal inhibition. Therefore, the entire stimulus-response relationship should be considered in comparing regional sympathetic responses.


2014 ◽  
Vol 307 (1) ◽  
pp. R75-R81 ◽  
Author(s):  
Lindsea C. Booth ◽  
Rohit Ramchandra ◽  
Paolo Calzavacca ◽  
Clive N. May

Effective treatment of sepsis remains a significant challenge in intensive care units. During sepsis, there is widespread activation of the sympathetic nervous system, which is thought to have both beneficial and detrimental effects. The sympathoexcitation is thought to be partly due to the developing hypotension, but may also be a response to the inflammatory mediators released. Thus, we investigated whether intracarotid infusion of prostaglandin E2 (PGE2) induced similar cardiovascular changes to those caused by intravenous infusion of Escherichia coli in sheep and whether inhibition of prostaglandin synthesis, with the nonselective cyclooxygenase inhibitor indomethacin, administered at 2 and 8 h after the onset of sepsis, reduced sympathetic nerve activity (SNA), and heart rate (HR). Studies were performed in conscious sheep instrumented to measure mean arterial pressure (MAP), HR, cardiac SNA (CSNA), and renal SNA (RSNA). Intracarotid infusion of PGE2 (50 ng·kg−1·min−1) increased temperature, CSNA, and HR, but not MAP or RSNA. Sepsis, induced by infusion of E. coli, increased CSNA, but caused an initial, transient inhibition of RSNA. At 2 h of sepsis, indomethacin (1.25 mg/kg bolus) increased MAP and caused reflex decreases in HR and CSNA. After 8 h of sepsis, indomethacin did not alter MAP, but reduced CSNA and HR, without altering baroreflex control. These findings indicate an important role for prostaglandins in mediating the increase in CSNA and HR during the development of hyperdynamic sepsis, whereas prostaglandins do not have a major role in determining the early changes in RSNA.


2016 ◽  
Vol 310 (1) ◽  
pp. R94-R99 ◽  
Author(s):  
Yonis Abukar ◽  
Clive N. May ◽  
Rohit Ramchandra

Heart failure (HF) is associated with increased sympathetic nerve activity to the heart (CSNA), which is directly linked to mortality in HF patients. Previous studies indicate that HF is associated with high levels of plasma endothelin-1 (ET-1), which correlates with the severity of the disease. We hypothesized that blockade of endothelin receptors would decrease CSNA. The effects of intravenous tezosentan (a nonselective ETA and ETB receptor antagonist) (8 mg·kg−1·h−1) on resting levels of CSNA, arterial pressure, and heart rate were determined in conscious normal sheep ( n = 6) and sheep with pacing-induced HF ( n = 7). HF was associated with a significant decrease in ejection fraction (from 74 ± 2% to 38 ± 1%, P < 0.001) and a significant increase in resting levels of CSNA burst incidence (from 56 ± 11 to 87 ± 2 bursts/100 heartbeats, P < 0.01). Infusion of tezosentan for 60 min significantly decreased resting mean aterial pressure (MAP) in both normal and HF sheep (−8 ± 4 mmHg and −4 ± 3 mmHg, respectively; P < 0.05). This was associated with a significant decrease in CSNA (by 25 ± 26% of control) in normal sheep, but there was no change in CSNA in HF sheep. Calculation of spontaneous baroreflex gain indicated significant impairment of the baroreflex control of HR after intravenous tezosentan infusion in normal animals but no change in HF animals. These data suggest that endogenous levels of ET-1 contribute to the baseline levels of CSNA in normal animals, but this effect is absent in HF.


1989 ◽  
Vol 256 (5) ◽  
pp. R1111-R1120 ◽  
Author(s):  
M. E. Clement ◽  
R. B. McCall

The purpose of the present investigation was to determine the role of the midline medulla in mediating the trigeminal depressor response. Previously we found that lesions of the midline medulla abolished the decrease in blood pressure resulting from electrical stimulation of the spinal trigeminal complex. Electrical stimulation (5 Hz) of the spinal trigeminal tract elicited a decrease in arterial blood pressure that was associated with an inhibition of sympathetic nerve activity recorded from the inferior cardiac nerve of anesthetized cats. The effect of single shocks applied to the trigeminal complex on sympathetic activity was determined using computer-averaging techniques. Single shock stimulation consistently elicited an excitation of sympathetic activity that was followed by an inhibition of sympathetic nerve discharge. The gamma-aminobutyric acid antagonist picrotoxin blocked the depressor response elicited by electrical stimulation of the midline medulla but not by stimulation of the spinal trigeminal complex. Extracellular recordings of the discharges of midline medullary neurons were made to determine the effects of trigeminal stimulation on sympathoinhibitory, sympathoexcitatory, and serotonin neurons. Sympathoinhibitory and sympathoexcitatory neurons were identified by the relationship between unitary discharges and sympathetic nerve activity and by their response to baroreceptor reflex activation. Serotonin (5-HT) neurons were identified using criteria previously developed in our laboratory. These included 1) a slow regular discharge rate, 2) sensitivity to the inhibitory action of the 5-HT1A agonist 8-OH 8-hydroxy-2-(di-n-propylamino)tetralin, 3) failure to respond to baroreceptor reflex activation, and 4) the discharges of the 5-HT neurons were not related to sympathetic activity. Stimulation of the spinal trigeminal complex typically inhibited the discharges of sympathoinhibitory neurons. In contrast, stimulation of the trigeminal complex consistently excited both sympathoexcitatory and 5-HT neurons. These results are discussed in relationship to the role of the midline medulla in mediating the trigeminal depressor response.


2001 ◽  
Vol 280 (6) ◽  
pp. R1906-R1913 ◽  
Author(s):  
J.-L. Liu ◽  
R. U. Pliquett ◽  
E. Brewer ◽  
K. G. Cornish ◽  
Y.-T. Shen ◽  
...  

Endothelin-1 (ET-1) is elevated in chronic heart failure (CHF). In this study, we determined the effects of chronic ET-1 blockade on renal sympathetic nerve activity (RSNA) in conscious rabbits with pacing-induced CHF. Rabbits were chronically paced at 320–340 beats/min for 3–4 wk until clinical and hemodynamic signs of CHF were present. Resting RSNA and arterial baroreflex control of RSNA were determined. Responses were determined before and after the ET-1 antagonist L-754,142 (a combined ETA and ETB receptor antagonist, n = 5) was administered by osmotic minipump infusion (0.5 mg · kg−1 · h−1 for 48 h). In addition, five rabbits with CHF were treated with the specific ETA receptor antagonist BQ-123. Baseline RSNA (expressed as a percentage of the maximum nerve activity during sodium nitroprusside infusion) was significantly higher (58.3 ± 4.9 vs. 27.0 ± 1.0, P < 0.001), whereas baroreflex sensitivity was significantly lower in rabbits with CHF compared with control (3.09 ± 0.19 vs. 6.04 ± 0.73, P < 0.001). L-754,142 caused a time-dependent reduction in arterial pressure and RSNA in rabbits with CHF. In addition, BQ-123 caused a reduction in resting RSNA. For both compounds, RSNA returned to near control levels 24 h after removal of the minipump. These data suggest that ET-1 contributes to sympathoexcitation in the CHF state. Enhancement of arterial baroreflex sensitivity may further contribute to sympathoinhibition after ET-1 blockade in heart failure.


Sign in / Sign up

Export Citation Format

Share Document