Effect of systemic nitric oxide synthase inhibition on postexercise hypotension in humans

2000 ◽  
Vol 89 (5) ◽  
pp. 1830-1836 ◽  
Author(s):  
John R. Halliwill ◽  
Christopher T. Minson ◽  
Michael J. Joyner

An acute bout of aerobic exercise results in a reduced blood pressure that lasts several hours. Animal studies suggest this response is mediated by increased production of nitric oxide. We tested the extent to which systemic nitric oxide synthase inhibition [ N G-monomethyl-l-arginine (l-NMMA)] can reverse the drop in blood pressure that occurs after exercise in humans. Eight healthy subjects underwent parallel experiments on 2 separate days. The order of the experiments was randomized between sham (60 min of seated upright rest) and exercise (60 min of upright cycling at 60% peak aerobic capacity). After both sham and exercise, subjects received, in sequence, systemic α-adrenergic blockade (phentolamine) and l-NMMA. Phentolamine was given first to isolate the contribution of nitric oxide to postexercise hypotension by preventing reflex changes in sympathetic tone that result from systemic nitric oxide synthase inhibition and to control for alterations in resting sympathetic activity after exercise. During each condition, systemic and regional hemodynamics were measured. Throughout the study, arterial pressure and vascular resistances remained lower postexercise vs. postsham despite nitric oxide synthase inhibition (e.g., mean arterial pressure afterl-NMMA was 108.0 ± 2.4 mmHg postsham vs. 102.1 ± 3.3 mmHg postexercise; P < 0.05). Thus it does not appear that postexercise hypotension is dependent on increased production of nitric oxide in humans.

2008 ◽  
Vol 294 (1) ◽  
pp. H190-H197 ◽  
Author(s):  
Jill M. Wecht ◽  
Joseph P. Weir ◽  
David S. Goldstein ◽  
Annmarie Krothe-Petroff ◽  
Ann M. Spungen ◽  
...  

Direct effects of vasoactive substances on blood pressure can be examined in individuals with tetraplegia due to disruption of descending spinal pathways to sympathetic preganglionic neurons, as cervical lesions interfere with baroreceptor reflex buffering of sympathetic outflow. In this study, we assessed effects of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester (l-NAME) on mean arterial pressure, heart rate, and plasma norepinephrine concentrations in individuals with tetraplegia vs. effects shown in a neurologically intact control group. Seven individuals with tetraplegia and seven age-matched controls received, on separate visits and in the following order, placebo (30 ml normal saline) and 0.5, 1, 2, and 4 mg/kg l-NAME intravenously over 60 min. Supine hemodynamic data were collected, and blood was sampled at the end of each infusion and at 120, 180, and 240 min thereafter. l-NAME increased mean arterial pressure, and the relative increase was greater in the tetraplegia group than in the control group. Heart rate was reduced after l-NAME administration in both groups. l-NAME decreased plasma norepinephrine in the control group but not in the group with tetraplegia. These findings suggest that reflexive sympathoinhibition normally buffers the pressor response to nitric oxide synthase inhibition, an effect that is not evident in individuals with tetraplegia as a result of decentralized sympathetic vasomotor control.


1995 ◽  
Vol 269 (1) ◽  
pp. F134-F139 ◽  
Author(s):  
W. H. Beierwaltes

The macula densa is a regulatory site for renin. It contains exclusively the neuronal isoform of nitric oxide synthase (NOS), suggesting NO could stimulate renin secretion through the macula densa pathway. To test whether neuronal NOS mediates renin secretion, renin was stimulated by either the renal baroreceptor or the diuretic furosemide (acting through the macula densa pathway). Renin secretion rate (RSR) was measured in 12 Inactin-anesthetized rats at normal (104 +/- 3 mmHg) and reduced renal perfusion pressure (65 +/- 1 mmHg), before and after selective blockade of the neuronal NOS with 7-nitroindazole (7-NI, 50 mg/kg ip). 7-NI had no effect on basal blood pressure (102 +/- 2 mmHg) or renal blood flow (RBF). Decreasing renal perfusion pressure doubled RSR from 11.8 +/- 3.3 to 22.9 +/- 5.7 ng ANG I.h-1.min-1 (P < 0.01) (ANG I is angiotensin I). Similarly, in 7-NI-treated rats, reduced perfusion doubled RSR from 8.5 +/- 1.8 to 20.5 +/- 6.2 ng ANG I.h-1.min-1 (P < 0.01). Renal hemodynamics and RSR were measured in response to 5 mg/kg iv furosemide in 12 control rats and 11 rats treated with 7-NI. Blocking neuronal NOS did not alter blood pressure (102 +/- 2 mmHg), RBF (5.8 +/- 0.4 ml.min-1.g kidney wt-1), or renal vascular resistance (18.7 +/- 1.4 mmHg.ml-1.min.g kidney wt).(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 267 (1) ◽  
pp. R84-R88 ◽  
Author(s):  
M. Huang ◽  
M. L. Leblanc ◽  
R. L. Hester

The study tested the hypothesis that the increase in blood pressure and decrease in cardiac output after nitric oxide (NO) synthase inhibition with N omega-nitro-L-arginine methyl ester (L-NAME) was partially mediated by a neurogenic mechanism. Rats were anesthetized with Inactin (thiobutabarbital), and a control blood pressure was measured for 30 min. Cardiac output and tissue flows were measured with radioactive microspheres. All measurements of pressure and flows were made before and after NO synthase inhibition (20 mg/kg L-NAME) in a group of control animals and in a second group of animals in which the autonomic nervous system was blocked by 20 mg/kg hexamethonium. In this group of animals, an intravenous infusion of norepinephrine (20-140 ng/min) was used to maintain normal blood pressure. L-NAME treatment resulted in a significant increase in mean arterial pressure in both groups. L-NAME treatment decreased cardiac output approximately 50% in both the intact and autonomic blocked animals (P < 0.05). Autonomic blockade alone had no effect on tissue flows. L-NAME treatment caused a significant decrease in renal, hepatic artery, stomach, intestinal, and testicular blood flow in both groups. These results demonstrate that the increase in blood pressure and decreases in cardiac output and tissue flows after L-NAME treatment are not dependent on a neurogenic mechanism.


2015 ◽  
Vol 37 (8) ◽  
pp. 633-642 ◽  
Author(s):  
Filiz Basralı ◽  
Günnur Koçer ◽  
Pınar Ülker Karadamar ◽  
Seher Nasırcılar Ülker ◽  
Leyla Satı ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document