Intermittent hypoxia increases ventilation and SaO2 during hypoxic exercise and hypoxic chemosensitivity

2001 ◽  
Vol 90 (4) ◽  
pp. 1431-1440 ◽  
Author(s):  
Keisho Katayama ◽  
Yasutake Sato ◽  
Yoshifumi Morotome ◽  
Norihiro Shima ◽  
Koji Ishida ◽  
...  

The purpose of this study was 1) to test the hypothesis that ventilation and arterial oxygen saturation (SaO2 ) during acute hypoxia may increase during intermittent hypoxia and remain elevated for a week without hypoxic exposure and 2) to clarify whether the changes in ventilation and SaO2 during hypoxic exercise are correlated with the change in hypoxic chemosensitivity. Six subjects were exposed to a simulated altitude of 4,500 m altitude for 7 days (1 h/day). Oxygen uptake (V˙o 2), expired minute ventilation (V˙e), and SaO2 were measured during maximal and submaximal exercise at 432 Torr before (Pre), after intermittent hypoxia (Post), and again after a week at sea level (De). Hypoxic ventilatory response (HVR) was also determined. At both Post and De, significant increases from Pre were found in HVR at rest and in ventilatory equivalent for O2(V˙e/V˙o 2) and SaO2 during submaximal exercise. There were significant correlations among the changes in HVR at rest and inV˙e/V˙o 2 and SaO2 during hypoxic exercise during intermittent hypoxia. We conclude that 1 wk of daily exposure to 1 h of hypoxia significantly improved oxygenation in exercise during subsequent acute hypoxic exposures up to 1 wk after the conditioning, presumably caused by the enhanced hypoxic ventilatory chemosensitivity.

2007 ◽  
Vol 103 (6) ◽  
pp. 1973-1978 ◽  
Author(s):  
Michael S. Koehle ◽  
A. William Sheel ◽  
William K. Milsom ◽  
Donald C. McKenzie

The purpose of this study was to compare chemoresponses following two different intermittent hypoxia (IH) protocols in humans. Ten men underwent two 7-day courses of poikilocapnic IH. The long-duration IH (LDIH) protocol consisted of daily 60-min exposures to normobaric 12% O2. The short-duration IH (SDIH) protocol comprised twelve 5-min bouts of 12% O2, separated by 5-min bouts of room air, daily. Isocapnic hypoxic ventilatory response (HVR) was measured daily during the protocol and 1 and 7 days following. Hypercapnic ventilatory response (HCVR) and CO2 threshold and sensitivity (by the modified Read rebreathing technique) were measured on days 1, 8, and 14. Following 7 days of IH, the mean HVR was significantly increased from 0.47 ± 0.07 and 0.47 ± 0.08 to 0.70 ± 0.06 and 0.79 ± 0.06 l·min−1·%SaO2−1 (LDIH and SDIH, respectively), where %SaO2 is percent arterial oxygen saturation. The increase in HVR reached a plateau after the third day. One week post-IH, HVR values were unchanged from baseline. HCVR increased from 3.0 ± 0.4 to 4.0 ± 0.5 l·min−1·mmHg−1. In both the hyperoxic and hypoxic modified Read rebreathing tests, the slope of the CO2/ventilation plot was unchanged by either intervention, but the CO2/ventilation curve shifted to the left following IH. There were no correlations between the changes in response to hypoxia and hypercapnia. There were no significant differences between the two IH protocols for any measures, indicating that comparable changes in chemoreflex control occur with either protocol. These results also suggest that the two methods of measuring CO2 response are not completely concordant and that the changes in CO2 control do not correlate with the increase in the HVR.


1980 ◽  
Vol 49 (3) ◽  
pp. 374-379 ◽  
Author(s):  
P. H. Hackett ◽  
J. T. Reeves ◽  
C. D. Reeves ◽  
R. F. Grover ◽  
D. Rennie

Sherpas are well known for their physical performance at extreme altitudes, yet they are reported to have blunted ventilatory responses to acute hypoxia and relative hypoventilation in chronic hypoxia. To examine this paradox, we studied ventilatory control in Sherpas in comparison to that in Westerners at both low and high altitude. At low altitude, 25 Sherpas had higher minute ventilation, higher respiratory frequency, and lower end-tidal carbon dioxide tension than 25 Westerners. The hypoxic ventilatory response of Sherpas was found to be similar to that in Westerners, even though long altitude exposure had blunted the responses of some Sherpas. At high altitude, Sherpas again had higher minute ventilation and a tendency toward higher arterial oxygen saturation than Westerners. Oxygen administration increased ventilation further in Sherpas but decreased ventilation in Westerners. We conclude that Sherpas differ from other high-altitude natives; their hypoxic ventilatory response is not blunted, and they exhibit relative hyperventilation.


1995 ◽  
Vol 79 (5) ◽  
pp. 1504-1511 ◽  
Author(s):  
D. Bee ◽  
D. J. Pallot

In a previous study, we showed that the acute hypoxic ventilatory response was blunted in anesthetized chronically hypoxic rats and was restored by blockade of the dopamine D2 receptor with domperidone. We now report observations made during 1–8 days of exposure to 10% O2 on the acute hypoxic ventilatory response and the effect of domperidone and relate them to dopamine content and cellular proliferation in the carotid body. Hypoxic exposure caused a parallel shift in the hypoxic response curve to higher levels of ventilation and arterial oxygen saturation. The greatest response occurred on day 1 and was unaffected by domperidone: dopamine content diminished and mitotic activity increased. By 8 days, hypoxic ventilation approached normal and was significantly augmented by domperidone; in the carotid body, dopamine levels had risen above the control level and mitoses had diminished. Thus the increase in ventilation was inversely related to carotid body dopamine content, which was depressed. The possibility of a causal relationship is discussed.


2012 ◽  
Vol 112 (4) ◽  
pp. 566-570 ◽  
Author(s):  
François J. Lhuissier ◽  
Maxime Brumm ◽  
Didier Ramier ◽  
Jean-Paul Richalet

The hypoxic exercise test combining a 4,800-m simulated altitude and a cycloergometer exercise at 30% of normoxic maximal aerobic power (MAP) is used to evaluate the individual chemosensitivity to hypoxia in submaximal exercise conditions. This test allows the calculation of three main parameters: the decrease in arterial oxygen saturation induced by hypoxia at exercise (ΔSae) and the ventilatory (HVRe) and cardiac (HCRe) responses to hypoxia at exercise. The aim of this study was to determine the influence of altitude and exercise intensity on the values of ΔSae, HVRe, and HCRe. Nine subjects performed hypoxic tests at three simulated altitudes (3,000 m, 4,000 m, and 4,800 m) and three exercise intensities (20%, 30%, and 40% MAP). ΔSae increased with altitude and was higher for 40% MAP than for 20% or 30% ( P < 0.05). For a constant heart rate, the loss in power output induced by hypoxia, relative to ΔSae, was independent of altitude (4,000–4,800 m) and of exercise intensity. HVRe and HCRe were independent of altitude (3,000–4,800 m) and exercise intensity (20%-40% MAP). Moreover, the intraindividual variability of responses to hypoxia was lower during moderate exercise than at rest ( P < 0.05 to P < 0.001). Therefore, we suggest that HVRe and HCRe are invariant parameters that can be considered as intrinsic physiological characteristics of chemosensitivity to hypoxia.


2011 ◽  
Vol 110 (1) ◽  
pp. 15-28 ◽  
Author(s):  
David G. Gerst ◽  
Sanar S. Yokhana ◽  
Laura M. Carney ◽  
Dorothy S. Lee ◽  
M. Safwan Badr ◽  
...  

This study examined whether time of day and repeated exposure to intermittent hypoxia have an impact on the hypoxic ventilatory response (HVR) and ventilatory long-term facilitation (vLTF). Thirteen participants with sleep apnea were exposed to twelve 4-min episodes of isocapnic hypoxia followed by a 30-min recovery period each day for 10 days. On days 1 (initial day) and 10 (final day) participants completed the protocol in the evening (PM); on the remaining days the protocol was completed in the morning (AM). The HVR was increased in the morning compared with evening on the initial (AM 0.83 ± 0.08 vs. PM 0.64 ± 0.11 l·min−1·%SaO2−1; P ≤ 0.01) and final days (AM 1.0 ± 0.08 vs. PM 0.81 ± 0.09 l·min−1·%SaO2−1; P ≤ 0.01, where %SaO2 refers to percent arterial oxygen saturation). Moreover, the magnitude of the HVR was enhanced following daily exposure to intermittent hypoxia in the morning (initial day 0.83 ± 0.08 vs. final day 1.0 ± 0.08 l·min−1·%SaO2−1; P ≤ 0.03) and evening (initial day 0.64 ± 0.11 vs. final day 0.81 ± 0.09 l·min−1·%SaO2−1; P ≤ 0.03). vLTF was reduced in the morning compared with the evening on the initial (AM 19.03 ± 0.35 vs. PM 22.30 ± 0.49 l/min; P ≤ 0.001) and final (AM 20.54 ± 0.32 vs. PM 23.11 ± 0.54 l/min; P ≤ 0.01) days. Following daily exposure to intermittent hypoxia, vLTF was enhanced in the morning (initial day 19.03 ± 0.35 vs. final day 20.54 ± 0.32 l/min; P ≤ 0.01). We conclude that the HVR is increased while vLTF is decreased in the morning compared with the evening in individuals with sleep apnea and that the magnitudes of these phenomena are enhanced following daily exposure to intermittent hypoxia.


2013 ◽  
Vol 114 (2) ◽  
pp. 180-185 ◽  
Author(s):  
Thomas Rupp ◽  
Marc Jubeau ◽  
Guillaume Y. Millet ◽  
Stéphane Perrey ◽  
François Esteve ◽  
...  

Performing exercise during the first hours of hypoxic exposure is thought to exacerbate acute mountain sickness (AMS), but whether this is due to increased hypoxemia or other mechanisms associated with exercise remains unclear. In 12 healthy men, AMS symptoms were assessed during three 11-h experimental sessions: 1) in Hypoxia-exercise, inspiratory O2 fraction (FiO2) was 0.12, and subjects performed 4-h cycling at 45% FiO2-specific maximal power output from the 4th to the 8th hour; 2) in Hypoxia-rest, FiO2 was continuously adjusted to match the same arterial oxygen saturation as in Hypoxia-exercise, and subjects remained at rest; and 3) in Normoxia-exercise, FiO2 was 0.21, and subjects cycled as in Hypoxia-exercise at 45% FiO2-specific maximal power output. AMS scores did not differ significantly between Hypoxia-exercise and Hypoxia-rest, while they were significantly lower in Normoxia-exercise (Lake Louise score: 5.5 ± 2.1, 4.4 ± 2.4, and 2.3 ± 1.5, and cerebral Environmental Symptom Questionnaire: 1.2 ± 0.7, 1.0 ± 1.0, and 0.3 ± 0.4, in Hypoxia-exercise, Hypoxia-rest, and Normoxia-exercise, respectively; P < 0.01). Headache scored by visual analog scale was higher in Hypoxia-exercise and Hypoxia-rest compared with Normoxia-exercise (36 ± 22, 35 ± 25, and 5 ± 6, P < 0.001), while the perception of fatigue was higher in Hypoxia-exercise compared with Hypoxia-rest (60 ± 24, 32 ± 22, and 46 ± 23, in Hypoxia-exercise, Hypoxia-rest, and Normoxia-exercise, respectively; P < 0.01). Despite significant physiological stress during hypoxic exercise and some AMS symptoms induced by normoxic cycling at similar relative workload, exercise does not significantly worsen AMS severity during the first hours of hypoxic exposure at a given arterial oxygen desaturation. Hypoxemia per se appears, therefore, to be the main mechanism underlying AMS, whether or not exercise is performed.


2006 ◽  
Vol 100 (6) ◽  
pp. 2031-2040 ◽  
Author(s):  
Andrew R. Hsu ◽  
Kimberly E. Barnholt ◽  
Nicolas K. Grundmann ◽  
Joseph H. Lin ◽  
Stewart W. McCallum ◽  
...  

Sildenafil causes pulmonary vasodilation, thus potentially reducing impairments of hypoxia-induced pulmonary hypertension on exercise performance at altitude. The purpose of this study was to determine the effects of sildenafil during normoxic and hypoxic exercise. We hypothesized that 1) sildenafil would have no significant effects on normoxic exercise, and 2) sildenafil would improve cardiac output, arterial oxygen saturation (SaO2), and performance during hypoxic exercise. Ten trained men performed one practice and three experimental trials at sea level (SL) and simulated high altitude (HA) of 3,874 m. Each cycling test consisted of a set-work-rate portion (55% work capacity: 1 h SL, 30 min HA) followed immediately by a time trial (10 km SL, 6 km HA). Double-blinded capsules (placebo, 50, or 100 mg) were taken 1 h before exercise in a randomly counterbalanced order. For HA, subjects also began breathing hypoxic gas (12.8% oxygen) 1 h before exercise. At SL, sildenafil had no effects on any cardiovascular or performance measures. At HA, sildenafil increased stroke volume (measured by impedance cardiography), cardiac output, and SaO2 during set-work-rate exercise. Sildenafil lowered 6-km time-trial time by 15% ( P < 0.05). SaO2 was also higher during the time trial ( P < 0.05) in response to sildenafil, despite higher work rates. Post hoc analyses revealed two subject groups, sildenafil responders and nonresponders, who improved time-trial performance by 39% ( P < 0.05) and 1.0%, respectively. No dose-response effects were observed. During cycling exercise in acute hypoxia, sildenafil can greatly improve cardiovascular function, SaO2, and performance for certain individuals.


2020 ◽  
Vol 120 (12) ◽  
pp. 2693-2704
Author(s):  
Erika Schagatay ◽  
Alexander Lunde ◽  
Simon Nilsson ◽  
Oscar Palm ◽  
Angelica Lodin-Sundström

Abstract Purpose Hypoxia and exercise are known to separately trigger spleen contraction, leading to release of stored erythrocytes. We studied spleen volume and hemoglobin concentration (Hb) during rest and exercise at three altitudes. Methods Eleven healthy lowlanders did a 5-min modified Harvard step test at 1370, 3700 and 4200 m altitude. Spleen volume was measured via ultrasonic imaging and capillary Hb with Hemocue during rest and after the step test, and arterial oxygen saturation (SaO2), heart rate (HR), expiratory CO2 (ETCO2) and respiratory rate (RR) across the test. Results Resting spleen volume was reduced with increasing altitude and further reduced with exercise at all altitudes. Mean (SE) baseline spleen volume at 1370 m was 252 (20) mL and after exercise, it was 199 (15) mL (P < 0.01). At 3700 m, baseline spleen volume was 231 (22) mL and after exercise 166 (12) mL (P < 0.05). At 4200 m baseline volume was 210 (23) mL and after exercise 172 (20) mL (P < 0.05). After 10 min, spleen volume increased to baseline at all altitudes (NS). Baseline Hb increased with altitude from 138.9 (6.1) g/L at 1370 m, to 141.2 (4.1) at 3700 m and 152.4 (4.0) at 4200 m (P < 0.01). At all altitudes Hb increased from baseline during exercise to 146.8 (5.7) g/L at 1370 m, 150.4 (3.8) g/L at 3700 m and 157.3 (3.8) g/L at 4200 m (all P < 0.05 from baseline). Hb had returned to baseline after 10 min rest at all altitudes (NS). The spleen-derived Hb elevation during exercise was smaller at 4200 m compared to 3700 m (P < 0.05). Cardiorespiratory variables were also affected by altitude during both rest and exercise. Conclusions The spleen contracts and mobilizes stored red blood cells during rest at high altitude and contracts further during exercise, to increase oxygen delivery to tissues during acute hypoxia. The attenuated Hb response to exercise at the highest altitude is likely due to the greater recruitment of the spleen reserve during rest, and that maximal spleen contraction is reached with exercise.


2016 ◽  
Vol 120 (10) ◽  
pp. 1186-1195 ◽  
Author(s):  
Barbara J. Morgan ◽  
Russell Adrian ◽  
Zun-yi Wang ◽  
Melissa L. Bates ◽  
John M. Dopp

We determined the effects of chronic exposure to intermittent hypoxia (CIH) on chemoreflex control of ventilation in conscious animals. Adult male Sprague-Dawley rats were exposed to CIH [nadir oxygen saturation (SpO2), 75%; 15 events/h; 10 h/day] or normoxia (NORM) for 21 days. We assessed the following responses to acute, graded hypoxia before and after exposures: ventilation (V̇e, via barometric plethysmography), V̇o2 and V̇co2 (analysis of expired air), heart rate (HR), and SpO2 (pulse oximetry via neck collar). We quantified hypoxia-induced chemoreceptor sensitivity by calculating the stimulus-response relationship between SpO2 and the ventilatory equivalent for V̇co2 (linear regression). An additional aim was to determine whether CIH causes proliferation of carotid body glomus cells (using bromodeoxyuridine). CIH exposure increased the slope of the V̇e/V̇co2/SpO2 relationship and caused hyperventilation in normoxia. Bromodeoxyuridine staining was comparable in CIH and NORM. Thus our CIH paradigm augmented hypoxic chemosensitivity without causing glomus cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document