V˙o 2 and heart rate kinetics in cycling: transitions from an elevated baseline
The purpose of this study was to examine oxygen consumption (V˙o 2) and heart rate kinetics during moderate and repeated bouts of heavy square-wave cycling from an exercising baseline. Eight healthy, male volunteers performed square-wave bouts of leg ergometry above and below the gas exchange threshold separated by recovery cycling at 35%V˙o 2 peak.V˙o 2 and heart rate kinetics were modeled, after removal of phase I data by use of a biphasic on-kinetics and monoexponential off-kinetics model. Fingertip capillary blood was sampled 45 s before each transition for base excess, HCO[Formula: see text] and lactate concentration, and pH. Base excess and HCO[Formula: see text] concentration were significantly lower, whereas lactate concentration and pH were not different before the second bout. The results confirm earlier reports of a smaller mean response time in the second heavy bout. This was the result of a significantly greater fast-component amplitude and smaller slow-component amplitude with invariant fast-component time constant. A role for local oxygen delivery limitation in heavy exercise transitions with unloaded but not moderate baselines is presented.