Effect of REM sleep on retroglossal cross-sectional area and compliance in normal subjects

2001 ◽  
Vol 91 (1) ◽  
pp. 239-248 ◽  
Author(s):  
James A. Rowley ◽  
Carrie S. Sanders ◽  
Brian R. Zahn ◽  
M. Safwan Badr

It has been proposed that the upper airway compliance should be highest during rapid eye movement (REM) sleep. Evidence suggests that the increased compliance is secondary to an increased retroglossal compliance. To test this hypothesis, we examined the effect of sleep stage on the relationship of retroglossal cross-sectional area (CSA; visualized with a fiber-optic scope) to pharyngeal pressure measured at the level of the oropharynx during eupneic breathing in subjects without significant sleep-disordered breathing. Breaths during REM sleep were divided into phasic (associated with eye movement, PREM) and tonic (not associated with eye movements, TREM). Retroglossal CSA decreased with non-REM (NREM) sleep and decreased further in PREM [wake 156.8 ± 48.6 mm2, NREM 104.6 ± 65.0 mm2( P < 0.05 wake vs. NREM), TREM 83.1 ± 46.4 mm2 ( P = not significant NREM vs. TREM), PREM 73.9 + 39.2 mm2 ( P < 0.05 TREM vs. PREM)]. Retroglossal compliance, defined as the slope of the regression CSA vs. pharyngeal pressure, was the same between all four conditions (wake −0.7 + 2.1 mm2/cmH2O, NREM 0.6 ± 3.0 mm2/cmH2O, TREM −0.2 ± 3.3 mm2/cmH2O, PREM −0.6 ± 5.1 mm2/cmH2O, P = not significant). We conclude that the intrinsic properties of the airway wall determine retroglossal compliance independent of changes in the neuromuscular activity associated with changes in sleep state.

2006 ◽  
Vol 100 (1) ◽  
pp. 294-303 ◽  
Author(s):  
Khaled F. Mansour ◽  
James A. Rowley ◽  
M. Safwan Badr

A noninvasive measurement of pharyngeal cross-sectional area (CSA) during sleep would be advantageous for research studies. We hypothesized that CSA could be calculated from the measured pharyngeal pressure and flow by finite element analysis (FEA). The retropalatal airway was visualized by using a fiber-optic scope to obtain the measured CSA (mCSA). Flow was measured with a pneumotachometer, and pharyngeal pressure was measured with a pressure catheter at the palatal rim. FEA was performed as follows: by using a three-dimensional image of the upper airway, a mesh of finite elements was created. Specialized software was used to allow the simultaneous calculation of velocity and area for each element by using the measured pressure and flow. In the development phase, 677 simultaneous measurements of CSA, pressure, and flow from one subject during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep were entered into the software to determine a series of equations, based on the continuity and momentum equations, that could calculate the CSA (cCSA). In the validation phase, the final equations were used to calculate the CSA from 1,767 simultaneous measurements of pressure and flow obtained during wakefulness, NREM, and REM sleep from 14 subjects. In both phases, mCSA and cCSA were compared by Bland-Altman analysis. For development breaths, the mean difference between mCSA and cCSA was 0.0 mm2 (95% CI, −0.1, 0.1 mm2). For NREM validation breaths, the mean difference between mCSA and cCSA was 1.1 mm2 (95% CI 1.3, 1.5 mm2). Pharyngeal CSA can be accurately calculated from measured pharyngeal pressure and flow by FEA.


1983 ◽  
Vol 55 (4) ◽  
pp. 1113-1119 ◽  
Author(s):  
F. G. Issa ◽  
C. E. Sullivan

The arousal and breathing responses to total airway occlusion during sleep were measured in 12 normal subjects (7 males and 5 females) aged 25-36 yr. Subjects slept while breathing through a specially designed nosemask, which was glued to the nose with medical-grade silicon rubber. The lips were sealed together with a thin layer of Silastic. The nosemask was attached to a wide-bore (20 mm ID) rigid tube to allow a constant-bias flow of room air from a blower. Total airway occlusion was achieved by simultaneously inflating two rubber balloons fixed in the inspiratory and expiratory pipes. A total of 39 tests were done in stage III/IV nonrapid-eye movement (NREM) sleep in 11 subjects and 10 tests in rapid-eye-movement (REM) sleep in 5 subjects. The duration of total occlusion tolerated before arousal from NREM sleep varied widely (range 0.9-67.0 s) with a mean duration of 20.4 +/- 2.3 (SE) s. The breathing response to occlusion in NREM sleep was characterised by a breath-by-breath progressive increase in suction pressure achieved by an increase in the rate of inspiratory pressure generation during inspiration. In contrast, during REM sleep, arousal invariably occurred after a short duration of airway occlusion (mean duration 6.2 +/- 1.2 s, maximum duration 11.8 s), and the occlusion induced a rapid shallow breathing pattern. Our results indicate that total nasal occlusion during sleep causes arousal with the response during REM sleep being more predictable and with a generally shorter latency than that in NREM sleep.


2002 ◽  
Vol 92 (6) ◽  
pp. 2535-2541 ◽  
Author(s):  
James A. Rowley ◽  
Carrie S. Sanders ◽  
Brian R. Zahn ◽  
M. Safwan Badr

It has been proposed that the gender difference in sleep apnea prevalence is related to gender differences in upper airway structure and function. We hypothesized that men would have smaller retropalatal cross-sectional area and higher compliance during sleep compared with women. Using upper airway imaging, we measured upper airway cross-sectional area and retropalatal compliance in wakefulness and non-rapid eye movement (NREM) sleep in 15 men and 15 women without sleep-disordered breathing. Cross-sectional area at the beginning of inspiration tended to be larger in men compared with women in both wakefulness [194.5 ± 21.3 vs. 138.8 ± 12.0 (SE) mm2] and NREM sleep (111.1 ± 17.6 vs. 83.3 ± 11.9 mm2; P = 0.058). There was no significant difference, however, after correction for body surface area. Retropalatal compliance also tended to be higher in men during both wakefulness (5.9 ± 1.4 vs. 3.1 ± 1.4 mm2/cmH2O; P = 0.006) and NREM sleep (12.6 ± 2.7 vs. 4.7 ± 2.6 mm2/cmH2O; P = 0.055). However, compliance was similar in men relative to women after correction for neck circumference. We conclude that the gender difference in retropalatal compliance is more accurately attributed to differences in neck circumference between the genders.


1996 ◽  
Vol 270 (2) ◽  
pp. H723-H729 ◽  
Author(s):  
S. M. Zinkovska ◽  
E. K. Rodriguez ◽  
D. A. Kirby

Changes in autonomic tone in the vasculature during sleep may have important implications for silent ischemia and sudden cardiac death. Few models exist in which both cardiac output and coronary blood flow are continuously measured during natural sleep and autonomic mechanisms are assessed. Catheters were chronically implanted in the aorta to measure mean arterial pressure (MAP), and flow probes were placed on the ascending aorta and the circumflex coronary artery of 18 pigs. Electrodes determined sleep stage as either non-rapid eye movement (NREM) or rapid eye movement (REM) sleep. The MAP was 73 +/- 3 mmHg in the quiet awake state, did not change in NREM, and decreased to 64 +/- 2 mmHg in REM sleep (P < 0.05). In NREM sleep, heart rate did not change from awake state values of 136 +/- 8 beats/min but increased by 5 beats/min in REM sleep (P < 0.05). Coronary vascular resistance decreased from awake state values of 2.7 +/- 0.2 to 2.2 +/- 0.2 mmHg.ml-1.min in REM (P < 0.05); total peripheral resistance decreased from awake values of 0.061 +/- 0.004 mmHg.ml-1.min to 0.050 +/- 0.003 in REM sleep (P < 0.05). Those changes appear to have been mediated primarily by reduction of alpha-adrenergic activity. Spectral analysis of heart rate suggests that power in the high-frequency range (a presumed indicator of parasympathetic tone) was lower in REM sleep than NREM sleep.


1990 ◽  
Vol 68 (4) ◽  
pp. 1605-1614 ◽  
Author(s):  
R. Sartene ◽  
P. Martinot-Lagarde ◽  
M. Mathieu ◽  
A. Vincent ◽  
M. Goldman ◽  
...  

A new device that utilizes the voltages induced in separate coils encircling the rib cage and abdomen by a magnetic field is described for measurement of cross-sectional areas of the human chest wall (rib cage and abdomen) and their variation during breathing. A uniform magnetic field (1.4 X 10(-7) Tesla at 100 kHz) is produced by generating an alternating current at 100 kHz in two square coils, 1.98 m on each side, parallel to the planes of the areas to be measured and placed symmetrically cephalad and caudad to these planes at a mean distance of 0.53 m. We demonstrated that the accuracy of the device on well-defined surfaces (squares, circles, rectangles, ellipses) was within 1% in all cases. Observed errors are due primarily to small inhomogeneities of the magnetic field and variation of the orientation of the coil relative to the field. Using a second magnetic field (80 kHz) perpendicular to the first, we measured the errors due to nonparallel orientation during quiet breathing and inspiratory capacity maneuvers. In 10 normal subjects, orientation effects were less than 2% for the rib cage and less than 0.7% for the abdomen. In five of these subjects, orientation effects at functional residual capacity in lateral and seated postures were generally less than or equal to 5%, but estimated tidal volume during spontaneous breathing was comparable to measurements in the supine posture. In five curarized patients, we assessed the linearity of volume-motion relationships of the rib cage and abdomen, comparing cross-sectional area and circumference measurements. Departures from linearity using cross-sectional areas were only one-third of those using circumferences. In seven normal subjects we compared cross-sectional area measurements with respiratory inductive plethysmography (RIP) and found comparable estimates of lung volume change over a wide range of relative rib cage contributions to tidal volume (-5 to 105%), with slightly higher standard deviations for the RIP (SD = 10% for RIP; SD = 4% for cross-sectional area).


2005 ◽  
Vol 19 (2) ◽  
pp. 215-219 ◽  
Author(s):  
Jenny Latte ◽  
David Taverner

Background We examined whether the use of two different external nasal dilator devices influenced the size of the nasal valve area and symptoms of nasal congestion. Methods This was a randomized blind-allocation, open three-way crossover study of Breathe Right, Side Strip Nasal Dilators, and placebo. We studied 12 healthy subjects (10 female, 2 male; age range 26–56 years). Measures of total volume and total minimum cross-sectional area were collected. Subjective symptoms were collected using a visual analog scale and an ordinal scale. Results With both products, there was significant increase in the size of the minimum cross-sectional area compared to placebo, p = 0.004. This is supported by the decrease in the subjective reports of congestion; on the visual analog scale, compared to placebo p = 0.012 and the ordinal scale, compared to placebo, p = 0.004. Conclusion Both devices significantly increase the size of the nasal valve area and reduce congestion in normal subjects.


2016 ◽  
Vol 21 (02) ◽  
pp. 222-228
Author(s):  
Bing Howe Lee ◽  
Chin Hock Goh ◽  
Amitabha Lahiri

Background: We consistently observed the presence of anechoic spaces on standard ultrasonographic imaging of the carpal tunnel inlet in normal subjects. These spaces change in size during finger flexion and have not been characterized in a large sample of normal individuals. Ultrasonographic quantification of these spaces may indicate the available space in the region of the carpal tunnel, which allows the normal motion of tendons and the median nerve. Methods: Transverse ultrasonographic images of the carpal tunnel inlet from 33 asymptomatic volunteers were obtained at Position A (fingers in extension) and B (fingers in flexion). Cross-sectional area (CSA), perimeter and position of anechoic space relative to median nerve were recorded. Results: Analysis showed a 75.4% prevalence rate of a single anechoic space. Two discrete patterns were observed. 89.1% had a decrease in CSA and perimeter of anechoic space from Position A to B while 10.9% exhibited an increase. Mean position of the anechoic space is ulnar (7.49 ± 3.57 mm) and dorsal (2.18 ± 1.28 mm) to the median nerve. Conclusions: A consistent anechoic space at the carpal tunnel inlet is seen in 75.4% of normal hands and can be quantified (cross sectional area 11.75 ± 7.36 mm2). It allows for the accommodation of flexor tendons during finger flexion.


1981 ◽  
Vol 51 (3) ◽  
pp. 557-564 ◽  
Author(s):  
E. Tabachnik ◽  
N. L. Muller ◽  
A. C. Bryan ◽  
H. Levison

The effect of sleep state on ventilation and the mechanics of breathing was studied in nine normal adolescents by use of a respiratory inductive plethysmograph and surface electromyogram electrodes. Minute ventilation was state dependent (P less than 0.01), decreasing by a mean of 8% from wakefulness to nonrapid-eye-movement (NREM) sleep and increasing 4% from NREM to rapid-eye-movement (REM) sleep. These changes were caused by changes in respiratory rate. Tidal volume (VT) was not affected by sleep state (P greater than 0.10). The pattern of breathing during wakefulness was similar to that of REM sleep. During NREM sleep intercostal and diaphragmatic muscle activity increased by a mean of 34% and 11%, respectively, as compared with wakefulness, indicating an increase in the respiratory work load. This was accompanied by a substantial increase in rib cage contribution to VT. REM sleep was associated with a marked decrease in intercostal muscle activity (P less than 0.05) and a diminished rib cage contribution; VT was maintained due to a mean increase of 34% in diaphragmatic muscle activity (P less than 0.05).


Cephalalgia ◽  
2012 ◽  
Vol 32 (4) ◽  
pp. 289-296 ◽  
Author(s):  
Sebastian Zaremba ◽  
Dagny Holle ◽  
Thomas E Wessendorf ◽  
Hans C Diener ◽  
Zaza Katsarava ◽  
...  

Background: The connection of cluster headache (CH) attacks with rapid eye movement (REM) sleep has been suggested by various studies, while other authors challenge this assumption. We performed serial polysomnography to determine the association of nocturnal CH attacks and sleep. Methods: Five patients diagnosed with CH (two with the episodic and three with the chronic subtype) were included and studied over four consecutive nights to evaluate connections between attacks onset and sleep stage. Results: Twenty typical CH attacks were reported. Thirteen of these attacks arose from sleep. Seven attacks were reported after waking in the morning or shortly before going to sleep. The beginnings of sleep-related attacks were distributed arbitrarily between different non-REM sleep stages. No association of CH attacks with REM or sleep disordered breathing was observed. Increased heart rate temporally associated with transition from one sleep state to another was observed before patients awoke with headache. Total sleep time, total wake time, arousal index and distribution of non-REM sleep stages were different between chronic and episodic CH. Conclusion: CH attacks are not associated with REM sleep. Brain regions involved in sleep stage transition might be involved in pathophysiology of CH. Differences in sleep characteristics between subgroups might indicate adaptation processes or underlying pathophysiology.


1993 ◽  
Vol 75 (2) ◽  
pp. 856-862 ◽  
Author(s):  
K. G. Henke ◽  
C. E. Sullivan

We examined the effects of high-frequency- (30-Hz) low-pressure oscillations (< 1 cmH2O) applied to the upper airway, via a nose mask, on genioglossus (EMGgg), sternomastoid (EMGsm), and diaphragm electromyogram (EMGdia) activity in sleeping humans. Ten patients with sleep apnea and six normal subjects were studied. The pressure oscillations were applied through the mask for a single breath. The subjects were studied in non-rapid-eye-movement (NREM) and rapid-eye-movement (REM) sleep. In the normal subjects, during NREM sleep, peak EMGgg, EMGsm, and EMGdia activity increased significantly in response to the oscillations in 63, 51, and 46%, respectively, of all trials. During REM sleep, significant increases occurred in 73, 88, and 13%, respectively, of all trials. Similar responses were observed in the patients with obstructive sleep apnea. Peak EMGgg, EMGsm, and EMGdia activity increased significantly in 74, 50, and 67%, respectively, of all NREM sleep trials and in 55, 81, and 76%, respectively, of all REM sleep trials. An important finding was that in 46% of the trials in the patients with sleep apnea the oscillation-induced increase in EMGgg activity was associated with a partial or complete reversal of the upper airway obstruction with an increase in tidal volume. This was observed in NREM and REM sleep. We conclude that there are upper airway receptors that respond to low-pressure-high-frequency oscillations applied to the upper airway that have input to the genioglossus and other muscles of respiration. These responses may be utilized in future treatment for sleep apnea.


Sign in / Sign up

Export Citation Format

Share Document