Effect of contraction frequency on leg blood flow during knee extension exercise in humans

2001 ◽  
Vol 91 (2) ◽  
pp. 671-679 ◽  
Author(s):  
Brian D. Hoelting ◽  
Barry W. Scheuermann ◽  
Thomas J. Barstow

Previous studies in isolated muscle preparations have shown that muscle blood flow becomes compromised at higher contraction frequencies. The purpose of this study was to examine the effect of increases in contraction frequency and muscle tension on mean blood flow (MBF) during voluntary exercise in humans. Nine male subjects [23.6 ± 3.7 (SD) yr] performed incremental knee extension exercise to exhaustion in the supine position at three contraction frequencies [40, 60, and 80 contractions/min (cpm)]. Mean blood velocity of the femoral artery was determined beat by beat using Doppler ultrasound. MBF was calculated by using the diameter of the femoral artery determined at rest using echo Doppler ultrasound. The work rate (WR) achieved at exhaustion was decreased ( P< 0.05) as contraction frequency increased (40 cpm, 16.2 ± 1.4 W; 60 cpm, 14.8 ± 1.4 W; 80 cpm, 13.2 ± 1.3 W). MBF was similar across the contraction frequencies at rest and during the first WR stage but was higher ( P < 0.05) at 40 than 80 cpm at exercise intensities >5 W. MBF was similar among contraction frequencies at exhaustion. In humans performing knee extension exercise in the supine position, muscle contraction frequency and/or muscle tension development may appreciably affect both the MBF and the amplitude of the contraction-to-contraction oscillations in muscle blood flow.

2005 ◽  
Vol 99 (2) ◽  
pp. 683-690 ◽  
Author(s):  
Nicole D. Paterson ◽  
John M. Kowalchuk ◽  
Donald H. Paterson

It has been suggested that, during heavy-intensity exercise, O2 delivery may limit oxygen uptake (V̇o2) kinetics; however, there are limited data regarding the relationship of blood flow and V̇o2 kinetics for heavy-intensity exercise. The purpose was to determine the exercise on-transient time course of femoral artery blood flow (Q̇leg) in relation to V̇o2 during heavy-intensity, single-leg, knee-extension exercise. Five young subjects performed five to eight repeats of heavy-intensity exercise with measures of breath-by-breath pulmonary V̇o2 and Doppler ultrasound femoral artery mean blood velocity and vessel diameter. The phase 2 time frame for V̇o2 and Q̇leg was isolated and fit with a monoexponent to characterize the amplitude and time course of the responses. Amplitude of the phase 3 response was also determined. The phase 2 time constant for V̇o2 of 29.0 s and time constant for Q̇leg of 24.5 s were not different. The change (Δ) in V̇o2 response to the end of phase 2 of 0.317 l/min was accompanied by a ΔQ̇leg of 2.35 l/min, giving a ΔQ̇leg-to-ΔV̇o2 ratio of 7.4. A slow-component V̇o2 of 0.098 l/min was accompanied by a further Q̇leg increase of 0.72 l/min (ΔQ̇leg-to-ΔV̇o2 ratio = 7.3). Thus the time course of Q̇leg was similar to that of muscle V̇o2 (as measured by the phase 2 V̇o2 kinetics), and throughout the on-transient the amplitude of the Q̇leg increase achieved (or exceeded) the Q̇leg-to-V̇o2 ratio steady-state relationship (ratio ∼4.9). Additionally, the V̇o2 slow component was accompanied by a relatively large rise in Q̇leg, with the increased O2 delivery meeting the increased V̇o2. Thus, in heavy-intensity, single-leg, knee-extension exercise, the amplitude and kinetics of blood flow to the exercising limb appear to be closely linked to the V̇o2 kinetics.


1999 ◽  
Vol 86 (2) ◽  
pp. 709-719 ◽  
Author(s):  
Takuya Osada ◽  
Toshihito Katsumura ◽  
Takafumi Hamaoka ◽  
Shigeru Inoue ◽  
Kazuki Esaki ◽  
...  

The redistribution of blood flow (BF) in the abdominal viscera during right-legged knee extension-flexion exercise at very low intensity [peak heart rate (HR), 76 beats/min] was examined by using Doppler ultrasound. While sitting, subjects performed a right-legged knee extension-flexion exercise every 6 s for 20 min. BF was measured in the upper abdominal aorta (Ao), right common femoral artery (RCFA), and left common femoral artery (LCFA). Visceral BF (BFVis) was determined by the equation [BFAo − (BFRCFA + BFLCFA)]. A comparison with the change in BF (ΔBF) preexercise showed a greater increase in ΔBFRCFA than in ΔBFAo during exercise. This resulted in a reduction of BFVisto 56% of its preexercise value or a decrease in flow by 1,147 ± 293 (±SE) ml/min at the peak workload. Oxygen consumption correlated positively with ΔBFAo, ΔBFRCFA, and ΔBFLCFA but inversely with ΔBFVis during exercise and recovery. Furthermore, BFVis (% of preexercise value) correlated inversely with both an increase in HR ( r = −0.89), and percent peak oxygen consumption ( r = −0.99). This study demonstrated that, even during very-low-intensity exercise (HR <90 beats/min), there was a significant shift in BF from the viscera to the exercising muscles.


2005 ◽  
Vol 98 (4) ◽  
pp. 1575-1583 ◽  
Author(s):  
Barbara J. Lutjemeier ◽  
Akira Miura ◽  
Barry W. Scheuermann ◽  
Shunsaku Koga ◽  
Dana K. Townsend ◽  
...  

To test for evidence of a muscle pump effect during steady-state upright submaximal knee extension exercise, seven male subjects performed seven discontinuous, incremental exercise stages (3 min/stage) at 40 contractions/min, at work rates ranging to 60–75% peak aerobic work rate. Cardiac cycle-averaged muscle blood flow (MBF) responses and contraction-averaged blood flow responses were calculated from continuous Doppler sonography of the femoral artery. Net contribution of the muscle pump was estimated by the difference between mean exercise blood flow (MBFM) and early recovery blood flow (MBFR). MBFM rose in proportion with increases in power output with no significant difference between the two methods of calculating MBF. For stages 1 and 5, MBFM was greater than MBFR; for all others, MBFM was similar to MBFR. For the lighter work rates ( stages 1–4), there was no significant difference between exercise and early recovery mean arterial pressure (MAP). During stages 5–7, MAP was significantly higher during exercise and fell significantly early in recovery. From these results we conclude that 1) at the lightest work rate, the muscle pump had a net positive effect on MBFM, 2) during steady-state moderate exercise ( stages 2–4) the net effect of rhythmic muscle contraction was neutral (i.e., the impedance due to muscle contraction was exactly offset by the potential enhancement during relaxation), and 3) at the three higher work rates tested ( stages 5–7), any enhancement to flow during relaxation was insufficient to fully compensate for the contraction-induced impedance to muscle perfusion. This necessitated a higher MAP to achieve the MBFM.


1998 ◽  
Vol 85 (5) ◽  
pp. 1622-1628 ◽  
Author(s):  
Maureen J. MacDonald ◽  
J. Kevin Shoemaker ◽  
Michael E. Tschakovsky ◽  
Richard L. Hughson

We tested the hypothesis that the slower increase in alveolar oxygen uptake (V˙o 2) at the onset of supine, compared with upright, exercise would be accompanied by a slower rate of increase in leg blood flow (LBF). Seven healthy subjects performed transitions from rest to 40-W knee extension exercise in the upright and supine positions. LBF was measured continuously with pulsed and echo Doppler methods, andV˙o 2 was measured breath by breath at the mouth. At rest, a smaller diameter of the femoral artery in the supine position ( P < 0.05) was compensated by a greater mean blood flow velocity (MBV) ( P < 0.05) so that LBF was not different in the two positions. At the end of 6 min of exercise, femoral artery diameter was larger in the upright position and there were no differences inV˙o 2, MBV, or LBF between upright and supine positions. The rates of increase ofV˙o 2 and LBF in the transition between rest and 40 W exercise, as evaluated by the mean response time (time to 63% of the increase), were slower in the supine [V˙o 2 = 39.7 ± 3.8 (SE) s, LBF = 27.6 ± 3.9 s] than in the upright positions (V˙o 2 = 29.3 ± 3.0 s, LBF = 17.3 ± 4.0 s; P < 0.05). These data support our hypothesis that slower increases in alveolarV˙o 2 at the onset of exercise in the supine position are accompanied by a slower increase in LBF.


1994 ◽  
Vol 77 (6) ◽  
pp. 2625-2632 ◽  
Author(s):  
J. K. Shoemaker ◽  
L. Hodge ◽  
R. L. Hughson

The kinetics of femoral artery mean blood velocity (MBV; measured by pulsed Doppler) and whole body oxygen uptake (VO2; measured breath by breath) were assessed from the time constant during the on (tau on) and off (tau off) transients to step changes in work rate between complete rest and dynamic knee extension (KE) exercise. Six healthy men performed 5 min of seated KE exercise, with each leg alternately raising and lowering a weight (10% maximum voluntary contraction) over a 2-s duty cycle. Because kinetic analysis of VO2 kinetics during KE exercise is a new approach, the VO2 responses were also evaluated during the on and off transitions to the more familiar upright cycling exercise in which the magnitude of increase in VO2 and cardiac output was similar to that during KE exercise. During KE exercise, VO2 tau on [mean 72.2 +/- 11.2 (SE) s] was slower than VO2 tau off (33.3 +/- 1.8 s; P < 0.01). Cardiac output, measured with impedance cardiography, was not different for tau on (67.1 +/- 20.0 s) compared with that for tau off (52.9 +/- 7.6 s). Likewise, MBV tau on (34.5 +/- 3.9 s) was not different from tau off (35.3 +/- 3.2 s). During cycling, the VO2 tau on (18.0 +/- 2.4 s) and tau off (30.7 +/- 1.2 s) were both faster than KE VO2 tau on (P < 0.01). Even though the MBV kinetics indicated a rapid adaptation of blood flow during KE exercise, there was a slow adaptation of VO2. A transient hyperemia immediately on cessation of KE exercise, indicated by both MBV and calculated systemic vascular conductance responses, suggested that blood flow might have been inadequate and could have contributed to the delayed adaptation of VO2 at the onset of exercise, although other explanations are possible.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Jeremy L. Theisen ◽  
Stephen M. Ratchford ◽  
Heather L. Clifton ◽  
Kanokwan Bunsawat ◽  
Zachary Barret‐O'keefe ◽  
...  

2005 ◽  
Vol 98 (1) ◽  
pp. 380-383 ◽  
Author(s):  
Kari K. Kalliokoski ◽  
Juhani Knuuti ◽  
Pirjo Nuutila

A recent study showed good correlation between regional blood flow (BF) and oxygen uptake (V̇o2) 30 min after exhaustive exercise. The question that remains open is whether there is similar good correlation between BF and V̇o2 also during exercise. We reanalyzed our previous data from a study in which BF and V̇o2 was measured in different quadriceps femoris muscles in seven healthy endurance-trained and seven healthy untrained men at rest and during low-intensity intermittent static knee-extension exercise (Kalliokoski KK, Oikonen V, Takala TO, Sipila H, Knuuti J, and Nuutila P. Am J Physiol Endocrinol Metab 280: E1015–E1021, 2001). When the mean values of each muscle were considered, there was good correlation between BF and V̇o2 during exercise in both groups ( r2 = 0.82 in untrained and 0.97 in trained). However, when calculated individually, the correlations were poorer, and the mean correlation coefficient ( r2) was significantly higher in the trained men (0.71 ± 0.07 vs. 0.40 ± 0.11, P = 0.03). These results suggest that there is large individual variation in matching BF to V̇o2 in human skeletal muscles during exercise, ranging from very poor to excellent. Furthermore, this matching seems to be better in the endurance-trained than in untrained men.


Sign in / Sign up

Export Citation Format

Share Document