Probing the human vestibular system with galvanic stimulation

2004 ◽  
Vol 96 (6) ◽  
pp. 2301-2316 ◽  
Author(s):  
Richard C. Fitzpatrick ◽  
Brian L. Day

Galvanic vestibular stimulation (GVS) is a simple, safe, and specific way to elicit vestibular reflexes. Yet, despite a long history, it has only recently found popularity as a research tool and is rarely used clinically. The obstacle to advancing and exploiting GVS is that we cannot interpret the evoked responses with certainty because we do not understand how the stimulus acts as an input to the system. This paper examines the electrophysiology and anatomy of the vestibular organs and the effects of GVS on human balance control and develops a model that explains the observed balance responses. These responses are large and highly organized over all body segments and adapt to postural and balance requirements. To achieve this, neurons in the vestibular nuclei receive convergent signals from all vestibular receptors and somatosensory and cortical inputs. GVS sway responses are affected by other sources of information about balance but can appear as the sum of otolithic and semicircular canal responses. Electrophysiological studies showing similar activation of primary afferents from the otolith organs and canals and their convergence in the vestibular nuclei support this. On the basis of the morphology of the cristae and the alignment of the semicircular canals in the skull, rotational vectors calculated for every mode of GVS agree with the observed sway. However, vector summation of signals from all utricular afferents does not explain the observed sway. Thus we propose the hypothesis that the otolithic component of the balance response originates from only the pars medialis of the utricular macula.

1988 ◽  
Vol 60 (5) ◽  
pp. 1753-1764 ◽  
Author(s):  
J. Kasper ◽  
R. H. Schor ◽  
V. J. Wilson

1. We have studied, in decerebrate cats, the responses of neurons in the lateral and descending vestibular nuclei to whole-body rotations in vertical planes that activated vertical semicircular canal and utricular receptors. Some neurons were identified as vestibulospinal by antidromic stimulation with floating electrodes placed in C4. 2. The direction of tilt that caused maximal excitation (response vector orientation) of each neuron was determined. Neuron dynamics were then studied with sinusoidal stimuli closely aligned with the response vector orientation, in the range 0.02-1 Hz. A few cells, for which we could not identify a response vector, probably had spatial-temporal convergence. 3. On the basis of dynamics, neurons were classified as receiving their input primarily from vertical semicircular canals, primarily from the otolith organs, or from canal+otolith convergence. 4. Response vector orientations of canal-driven neurons were often near +45 degrees or -45 degrees with respect to the transverse (roll) plane, suggesting these neurons received excitatory input from the ipsilateral anterior or posterior canal, respectively. Some neurons had canal-related dynamics but vector orientations near roll, presumably because they received convergent input from the ipsilateral anterior and posterior canals. Few neurons had their vectors near pitch. 5. In the lateral vestibular nucleus, neurons with otolith organ input (pure otolith or otolith+canal) tended to have vector orientations closer to roll than to pitch. In the descending nucleus the responses were evenly divided between the roll and pitch quadrants. 6. We conclude that most of our neurons have dynamics and response vector orientations that make them good candidates to participate in vestibulospinal reflexes acting on the limbs, but not those acting on the neck.


2018 ◽  
Vol 119 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Shawn D. Newlands ◽  
Ben Abbatematteo ◽  
Min Wei ◽  
Laurel H. Carney ◽  
Hongge Luan

Roughly half of all vestibular nucleus neurons without eye movement sensitivity respond to both angular rotation and linear acceleration. Linear acceleration signals arise from otolith organs, and rotation signals arise from semicircular canals. In the vestibular nerve, these signals are carried by different afferents. Vestibular nucleus neurons represent the first point of convergence for these distinct sensory signals. This study systematically evaluated how rotational and translational signals interact in single neurons in the vestibular nuclei: multisensory integration at the first opportunity for convergence between these two independent vestibular sensory signals. Single-unit recordings were made from the vestibular nuclei of awake macaques during yaw rotation, translation in the horizontal plane, and combinations of rotation and translation at different frequencies. The overall response magnitude of the combined translation and rotation was generally less than the sum of the magnitudes in responses to the stimuli applied independently. However, we found that under conditions in which the peaks of the rotational and translational responses were coincident these signals were approximately additive. With presentation of rotation and translation at different frequencies, rotation was attenuated more than translation, regardless of which was at a higher frequency. These data suggest a nonlinear interaction between these two sensory modalities in the vestibular nuclei, in which coincident peak responses are proportionally stronger than other, off-peak interactions. These results are similar to those reported for other forms of multisensory integration, such as audio-visual integration in the superior colliculus. NEW & NOTEWORTHY This is the first study to systematically explore the interaction of rotational and translational signals in the vestibular nuclei through independent manipulation. The results of this study demonstrate nonlinear integration leading to maximum response amplitude when the timing and direction of peak rotational and translational responses are coincident.


1995 ◽  
Vol 5 (3) ◽  
pp. 147-170
Author(s):  
V.J. Wilson ◽  
R. Boyle ◽  
K. Fukushima ◽  
P.K. Rose ◽  
Y. Shinoda ◽  
...  

Stabilization of the head is required not only for adequate motor performance, such as maintaining balance while standing or walking, but also for the adequate reception of sensory inputs such as visual and auditory information. The vestibular organs, which consist of three approximately orthogonal semicircular canals (anterior, horizontal, posterior) and two otolith organs (utriculus, sacculus), provide the most important input for the detection of head movement. Activation of afferents from these receptors evokes the vestibulocollic reflex (VCR), which stabilizes bead position in space. In this review, which is the outgrowth of a session of the vestibular symposium held in Hawaii in April, 1994, we discuss the neural substrate of this reflex and some aspects of the central processing involved in its production. Some topics are not considered, in particular the important interaction between the VCR and the cervicocollic reflex evoked by activation of neck afferents (70,119), and attempts to model the reflex (69).


1993 ◽  
Vol 70 (3) ◽  
pp. 938-946 ◽  
Author(s):  
B. J. Yates ◽  
T. Goto ◽  
I. Kerman ◽  
P. S. Bolton

1. Over two thirds of caudal medullary raphespinal neurons respond to electrical stimulation of the vestibular nerve, and it has been suggested that these neurons may participate in the generation of vestibulospinal and vestibulosympathetic reflexes. The objective of the present study was to determine which vestibular endorgans (semicircular canals or otolith organs) provide inputs to these cells. 2. Experiments were conducted on decerebrate cats that were baroreceptor denervated and vagotomized, and that had a cervical spinal cord transection so that inputs from tilt-sensitive receptors outside of the labyrinth did not influence the units we recorded. 3. In most experiments, vertical vestibular stimulation was used to stimulate the anterior and posterior semicircular canals and the otolith organs. The plane of whole body rotation that produced maximal modulation of a neuron's firing rate (response vector orientation) was measured at one or more frequencies between 0.1 and 0.5 Hz. Neuron dynamics were then studied with sinusoidal (0.02-1 Hz) stimuli aligned with this orientation. Alternatively, in two animals horizontal rotations at 0.5 and 1.0 Hz were employed to stimulate the horizontal semicircular canals. 4. The properties of raphespinal neurons were similar to those of a larger sample of raphe neurons studied that either could not be antidromically activated from the cervical spinal cord or were not tested for a spinal projection. In response to vertical vestibular stimulation, > 85% of caudal medullary raphe neurons had response gains that remained relatively constant across stimulus frequencies, like regularly firing otolith afferents.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 84 (6) ◽  
pp. 475-480 ◽  
Author(s):  
Anthony P. Scinicariello ◽  
Kenneth Eaton ◽  
J. Timothy Inglis ◽  
J. J. Collins

2006 ◽  
Vol 59 (11-12) ◽  
pp. 585-590 ◽  
Author(s):  
Slobodanka Lemajic-Komazec ◽  
Zoran Komazec

Dizziness is one of the most common reasons patients visit their physicians. Balance control depends on receiving afferent sensory information from several sensory systems: vestibular, optical and proprioceptive. Bioelectric signals, generated by body movements in the semicircular canals and in the otolithic apparatus, are transported via the vestibular nerve to the vestibular nucleus. All four vestibular nuclei, located bilaterally in medial longitudinal fasciculus, are linked with central nervous system structures. These central nervous system structures are involved in maintaining visual stability, spatial orientation and balance control. Nystagmus is a result of afferent signals balance disorders. Nystagmus due to peripheral lesions is conjugate nystagmus, because there is a bilateral central connection. Lesions above the vestibular nuclei induce deficits in synchronization and conjugation of eye movements, thus the nystagmus is dissociated. This paper shows that in peripheral vestibular disorders spontaneous nystagmus is rhythmic, associated, horizontal-rotatory or horizontal, with subjective sensation of dizziness which decreases with time and harmonic signs whose direction coincides with the slow phase of nystagmus and it is associated with mild disorders during pendular stimulation with statistically significant vestibular hypofunction. Spontaneous nystagmus in central vestibular lesions is severe, dissociated, horizontal, rotatory or vertical, without changes related to optical suppression; if vestibular symptoms are present, they are non-harmonic. In central disorders, findings after thermal stimulation are either normal or pathological, with dysrhythmias and inhibition in pendular stimulation. This paper deals with differential diagnosis of vertigo based on anamnesis and clinical examination, as well as objective diagnostic tests. .


2019 ◽  
Vol 121 (3) ◽  
pp. 973-982 ◽  
Author(s):  
Bernard Cohen ◽  
Mingjia Dai ◽  
Sergei B. Yakushin ◽  
Catherine Cho

Although motion of the head and body has been suspected or known as the provocative cause for the production of motion sickness for centuries, it is only within the last 20 yr that the source of the signal generating motion sickness and its neural basis has been firmly established. Here, we briefly review the source of the conflicts that cause the body to generate the autonomic signs and symptoms that constitute motion sickness and provide a summary of the experimental data that have led to an understanding of how motion sickness is generated and can be controlled. Activity and structures that produce motion sickness include vestibular input through the semicircular canals, the otolith organs, and the velocity storage integrator in the vestibular nuclei. Velocity storage is produced through activity of vestibular-only (VO) neurons under control of neural structures in the nodulus of the vestibulo-cerebellum. Separate groups of nodular neurons sense orientation to gravity, roll/tilt, and translation, which provide strong inhibitory control of the VO neurons. Additionally, there are acetylcholinergic projections from the nodulus to the stomach, which along with other serotonergic inputs from the vestibular nuclei, could induce nausea and vomiting. Major inhibition is produced by the GABAB receptors, which modulate and suppress activity in the velocity storage integrator. Ingestion of the GABAB agonist baclofen causes suppression of motion sickness. Hopefully, a better understanding of the source of sensory conflict will lead to better ways to avoid and treat the autonomic signs and symptoms that constitute the syndrome.


2013 ◽  
Vol 109 (7) ◽  
pp. 1900-1911 ◽  
Author(s):  
Alexis Dale ◽  
Kathleen E. Cullen

Maintaining a constant representation of our heading as we move through the world requires the accurate estimate of spatial orientation. As one turns (or is turned) toward a new heading, signals from the semicircular canals are relayed through the vestibular system to higher-order centers that encode head direction. To date, there is no direct electrophysiological evidence confirming the first relay point of head-motion signals from the vestibular nuclei, but previous anatomical and lesion studies have identified the nucleus prepositus as a likely candidate. Whereas burst-tonic neurons encode only eye-movement signals during head-fixed eye motion and passive vestibular stimulation, these neurons have not been studied during self-generated movements. Here, we specifically address whether burst-tonic neurons encode head motion during active behaviors. Single-unit responses were recorded from the nucleus prepositus of rhesus monkeys and compared for head-restrained and active conditions with comparable eye velocities. We found that neurons consistently encoded eye position and velocity across conditions but did not exhibit significant sensitivity to head position or velocity. Additionally, response sensitivities varied as a function of eye velocity, similar to abducens motoneurons and consistent with their role in gaze control and stabilization. Thus our results demonstrate that the primate nucleus prepositus chiefly encodes eye movement even during active head-movement behaviors, a finding inconsistent with the proposal that this nucleus makes a direct contribution to head-direction cell tuning. Given its ascending projections, however, we speculate that this eye-movement information is integrated with other inputs in establishing higher-order spatial representations.


2016 ◽  
Vol 116 (4) ◽  
pp. 1785-1794 ◽  
Author(s):  
Andrew A. McCall ◽  
Derek M. Miller ◽  
William M. DeMayo ◽  
George H. Bourdages ◽  
Bill J. Yates

The limbs constitute the sole interface with the ground during most waking activities in mammalian species; it is therefore expected that somatosensory inputs from the limbs provide important information to the central nervous system for balance control. In the decerebrate cat model, the activity of a subset of neurons in the vestibular nuclei (VN) has been previously shown to be modulated by hindlimb movement. However, decerebration can profoundly alter the effects of sensory inputs on the activity of brain stem neurons, resulting in epiphenomenal responses. Thus, before this study, it was unclear whether and how somatosensory inputs from the limb affected the activity of VN neurons in conscious animals. We recorded brain stem neuronal activity in the conscious cat and characterized the responses of VN neurons to flexion and extension hindlimb movements and to whole body vertical tilts (vestibular stimulation). Among 96 VN neurons whose activity was modulated by vestibular stimulation, the firing rate of 65 neurons (67.7%) was also affected by passive hindlimb movement. VN neurons in conscious cats most commonly encoded hindlimb movement irrespective of the direction of movement ( n = 33, 50.8%), in that they responded to all flexion and extension movements of the limb. Other VN neurons overtly encoded information about the direction of hindlimb movement ( n = 27, 41.5%), and the remainder had more complex responses. These data confirm that hindlimb somatosensory and vestibular inputs converge onto VN neurons of the conscious cat, suggesting that VN neurons integrate somatosensory inputs from the limbs in computations that affect motor outflow to maintain balance.


Sign in / Sign up

Export Citation Format

Share Document