scholarly journals The neural basis of motion sickness

2019 ◽  
Vol 121 (3) ◽  
pp. 973-982 ◽  
Author(s):  
Bernard Cohen ◽  
Mingjia Dai ◽  
Sergei B. Yakushin ◽  
Catherine Cho

Although motion of the head and body has been suspected or known as the provocative cause for the production of motion sickness for centuries, it is only within the last 20 yr that the source of the signal generating motion sickness and its neural basis has been firmly established. Here, we briefly review the source of the conflicts that cause the body to generate the autonomic signs and symptoms that constitute motion sickness and provide a summary of the experimental data that have led to an understanding of how motion sickness is generated and can be controlled. Activity and structures that produce motion sickness include vestibular input through the semicircular canals, the otolith organs, and the velocity storage integrator in the vestibular nuclei. Velocity storage is produced through activity of vestibular-only (VO) neurons under control of neural structures in the nodulus of the vestibulo-cerebellum. Separate groups of nodular neurons sense orientation to gravity, roll/tilt, and translation, which provide strong inhibitory control of the VO neurons. Additionally, there are acetylcholinergic projections from the nodulus to the stomach, which along with other serotonergic inputs from the vestibular nuclei, could induce nausea and vomiting. Major inhibition is produced by the GABAB receptors, which modulate and suppress activity in the velocity storage integrator. Ingestion of the GABAB agonist baclofen causes suppression of motion sickness. Hopefully, a better understanding of the source of sensory conflict will lead to better ways to avoid and treat the autonomic signs and symptoms that constitute the syndrome.

2016 ◽  
Vol 116 (4) ◽  
pp. 1586-1591 ◽  
Author(s):  
Joanne Wang ◽  
Richard F. Lewis

Migraine is associated with enhanced motion sickness susceptibility and can cause episodic vertigo [vestibular migraine (VM)], but the mechanisms relating migraine to these vestibular symptoms remain uncertain. We tested the hypothesis that the central integration of rotational cues (from the semicircular canals) and gravitational cues (from the otolith organs) is abnormal in migraine patients. A postrotational tilt paradigm generated a conflict between canal cues (which indicate the head is rotating) and otolith cues (which indicate the head is tilted and stationary), and eye movements were measured to quantify two behaviors that are thought to minimize this conflict: suppression and reorientation of the central angular velocity signal, evidenced by attenuation (“dumping”) of the vestibuloocular reflex and shifting of the rotational axis of the vestibuloocular reflex toward the earth vertical. We found that normal and migraine subjects, but not VM patients, displayed an inverse correlation between the extent of dumping and the size of the axis shift such that the net “conflict resolution” mediated through these two mechanisms approached an optimal value and that the residual sensory conflict in VM patients (but not migraine or normal subjects) correlated with motion sickness susceptibility. Our findings suggest that the brain normally controls the dynamic and spatial characteristics of central vestibular signals to minimize intravestibular sensory conflict and that this process is disrupted in VM, which may be responsible for the enhance motion intolerance and episodic vertigo that characterize this disorder.


2004 ◽  
Vol 96 (6) ◽  
pp. 2301-2316 ◽  
Author(s):  
Richard C. Fitzpatrick ◽  
Brian L. Day

Galvanic vestibular stimulation (GVS) is a simple, safe, and specific way to elicit vestibular reflexes. Yet, despite a long history, it has only recently found popularity as a research tool and is rarely used clinically. The obstacle to advancing and exploiting GVS is that we cannot interpret the evoked responses with certainty because we do not understand how the stimulus acts as an input to the system. This paper examines the electrophysiology and anatomy of the vestibular organs and the effects of GVS on human balance control and develops a model that explains the observed balance responses. These responses are large and highly organized over all body segments and adapt to postural and balance requirements. To achieve this, neurons in the vestibular nuclei receive convergent signals from all vestibular receptors and somatosensory and cortical inputs. GVS sway responses are affected by other sources of information about balance but can appear as the sum of otolithic and semicircular canal responses. Electrophysiological studies showing similar activation of primary afferents from the otolith organs and canals and their convergence in the vestibular nuclei support this. On the basis of the morphology of the cristae and the alignment of the semicircular canals in the skull, rotational vectors calculated for every mode of GVS agree with the observed sway. However, vector summation of signals from all utricular afferents does not explain the observed sway. Thus we propose the hypothesis that the otolithic component of the balance response originates from only the pars medialis of the utricular macula.


2018 ◽  
Vol 119 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Shawn D. Newlands ◽  
Ben Abbatematteo ◽  
Min Wei ◽  
Laurel H. Carney ◽  
Hongge Luan

Roughly half of all vestibular nucleus neurons without eye movement sensitivity respond to both angular rotation and linear acceleration. Linear acceleration signals arise from otolith organs, and rotation signals arise from semicircular canals. In the vestibular nerve, these signals are carried by different afferents. Vestibular nucleus neurons represent the first point of convergence for these distinct sensory signals. This study systematically evaluated how rotational and translational signals interact in single neurons in the vestibular nuclei: multisensory integration at the first opportunity for convergence between these two independent vestibular sensory signals. Single-unit recordings were made from the vestibular nuclei of awake macaques during yaw rotation, translation in the horizontal plane, and combinations of rotation and translation at different frequencies. The overall response magnitude of the combined translation and rotation was generally less than the sum of the magnitudes in responses to the stimuli applied independently. However, we found that under conditions in which the peaks of the rotational and translational responses were coincident these signals were approximately additive. With presentation of rotation and translation at different frequencies, rotation was attenuated more than translation, regardless of which was at a higher frequency. These data suggest a nonlinear interaction between these two sensory modalities in the vestibular nuclei, in which coincident peak responses are proportionally stronger than other, off-peak interactions. These results are similar to those reported for other forms of multisensory integration, such as audio-visual integration in the superior colliculus. NEW & NOTEWORTHY This is the first study to systematically explore the interaction of rotational and translational signals in the vestibular nuclei through independent manipulation. The results of this study demonstrate nonlinear integration leading to maximum response amplitude when the timing and direction of peak rotational and translational responses are coincident.


2009 ◽  
Vol 102 (3) ◽  
pp. 1657-1671 ◽  
Author(s):  
A. A. Tarnutzer ◽  
C. Bockisch ◽  
D. Straumann ◽  
I. Olasagasti

The brain integrates sensory input from the otolith organs, the semicircular canals, and the somatosensory and visual systems to determine self-orientation relative to gravity. Only the otoliths directly sense the gravito-inertial force vector and therefore provide the major input for perceiving static head-roll relative to gravity, as measured by the subjective visual vertical (SVV). Intraindividual SVV variability increases with head roll, which suggests that the effectiveness of the otolith signal is roll-angle dependent. We asked whether SVV variability reflects the spatial distribution of the otolithic sensors and the otolith-derived acceleration estimate. Subjects were placed in different roll orientations (0–360°, 15° steps) and asked to align an arrow with perceived vertical. Variability was minimal in upright, increased with head-roll peaking around 120–135°, and decreased to intermediate values at 180°. Otolith-dependent variability was modeled by taking into consideration the nonuniform distribution of the otolith afferents and their nonlinear firing rate. The otolith-derived estimate was combined with an internal bias shifting the estimated gravity-vector toward the body-longitudinal. Assuming an efficient otolith estimator at all roll angles, peak variability of the model matched our data; however, modeled variability in upside-down and upright positions was very similar, which is at odds with our findings. By decreasing the effectiveness of the otolith estimator with increasing roll, simulated variability matched our experimental findings better. We suggest that modulations of SVV precision in the roll plane are related to the properties of the otolith sensors and to central computational mechanisms that are not optimally tuned for roll-angles distant from upright.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Susan King ◽  
Adrian J. Priesol ◽  
Shmuel E. Davidi ◽  
Daniel M. Merfeld ◽  
Farzad Ehtemam ◽  
...  

Abstract Vestibular migraine (VM) is the most common cause of spontaneous vertigo but remains poorly understood. We investigated the hypothesis that central vestibular pathways are sensitized in VM by measuring self-motion perceptual thresholds in patients and control subjects and by characterizing the vestibulo-ocular reflex (VOR) and vestibular and headache symptom severity. VM patients were abnormally sensitive to roll tilt, which co-modulates semicircular canal and otolith organ activity, but not to motions that activate the canals or otolith organs in isolation, implying sensitization of canal-otolith integration. When tilt thresholds were considered together with vestibular symptom severity or VOR dynamics, VM patients segregated into two clusters. Thresholds in one cluster correlated positively with symptoms and with the VOR time constant; thresholds in the second cluster were uniformly low and independent of symptoms and the time constant. The VM threshold abnormality showed a frequency-dependence that paralleled the brain stem velocity storage mechanism. These results support a pathogenic model where vestibular symptoms emanate from the vestibular nuclei, which are sensitized by migraine-related brainstem regions and simultaneously suppressed by inhibitory feedback from the cerebellar nodulus and uvula, the site of canal-otolith integration. This conceptual framework elucidates VM pathophysiology and could potentially facilitate its diagnosis and treatment.


1964 ◽  
Vol 42 (6) ◽  
pp. 793-801 ◽  
Author(s):  
K. E. Money ◽  
J. Friedberg

The discrete surgical inactivation of all six semicircular canals was found to be equivalent to bilateral labyrinthectomy in eliminating motion sickness in dogs, even though the otolith organs remained functional. Inactivation of fewer than six of the canals reduced the susceptibility of dogs to motion sickness, but to a lesser degree than did inactivation of all six canals. These findings are consistent with the theory that stimulation of the semicircular canals causes motion sickness.Rotatory tests of the horizontal and vertical semicircular canals and tests of an otolith reflex, preoperatively and postoperatively, yielded information about the basic functions of the semicircular canals and confirmed that the surgical procedures had accomplished their objectives without unintended damage to other vestibular receptors.


2012 ◽  
Vol 303 (9) ◽  
pp. R929-R940 ◽  
Author(s):  
Jennifer D. Moy ◽  
Daniel J. Miller ◽  
Michael F. Catanzaro ◽  
Bret M. Boyle ◽  
Sarah W. Ogburn ◽  
...  

The dorsolateral reticular formation of the caudal medulla, or the lateral tegmental field (LTF), has been classified as the brain's “vomiting center”, as well as an important region in regulating sympathetic outflow. We examined the responses of LTF neurons in cats to rotations of the body that activate vestibular receptors, as well as to stimulation of baroreceptors (through mechanical stretch of the carotid sinus) and gastrointestinal receptors (through the intragastric administration of the emetic compound copper sulfate). Approximately half of the LTF neurons exhibited graviceptive responses to vestibular stimulation, similar to primary afferents innervating otolith organs. The other half of the neurons had complex responses, including spatiotemporal convergence behavior, suggesting that they received convergent inputs from a variety of vestibular receptors. Neurons that received gastrointestinal and baroreceptor inputs had similar complex responses to vestibular stimulation; such responses are expected for neurons that contribute to the generation of motion sickness. LTF units with convergent baroreceptor and vestibular inputs may participate in producing the cardiovascular system components of motion sickness, such as the changes in skin blood flow that result in pallor. The administration of copper sulfate often modulated the gain of responses of LTF neurons to vestibular stimulation, particularly for units whose spontaneous firing rate was altered by infusion of drug (median of 459%). The present results raise the prospect that emetic signals from the gastrointestinal tract modify the processing of vestibular inputs by LTF neurons, thereby affecting the probability that vomiting will occur as a consequence of motion sickness.


1988 ◽  
Vol 60 (5) ◽  
pp. 1753-1764 ◽  
Author(s):  
J. Kasper ◽  
R. H. Schor ◽  
V. J. Wilson

1. We have studied, in decerebrate cats, the responses of neurons in the lateral and descending vestibular nuclei to whole-body rotations in vertical planes that activated vertical semicircular canal and utricular receptors. Some neurons were identified as vestibulospinal by antidromic stimulation with floating electrodes placed in C4. 2. The direction of tilt that caused maximal excitation (response vector orientation) of each neuron was determined. Neuron dynamics were then studied with sinusoidal stimuli closely aligned with the response vector orientation, in the range 0.02-1 Hz. A few cells, for which we could not identify a response vector, probably had spatial-temporal convergence. 3. On the basis of dynamics, neurons were classified as receiving their input primarily from vertical semicircular canals, primarily from the otolith organs, or from canal+otolith convergence. 4. Response vector orientations of canal-driven neurons were often near +45 degrees or -45 degrees with respect to the transverse (roll) plane, suggesting these neurons received excitatory input from the ipsilateral anterior or posterior canal, respectively. Some neurons had canal-related dynamics but vector orientations near roll, presumably because they received convergent input from the ipsilateral anterior and posterior canals. Few neurons had their vectors near pitch. 5. In the lateral vestibular nucleus, neurons with otolith organ input (pure otolith or otolith+canal) tended to have vector orientations closer to roll than to pitch. In the descending nucleus the responses were evenly divided between the roll and pitch quadrants. 6. We conclude that most of our neurons have dynamics and response vector orientations that make them good candidates to participate in vestibulospinal reflexes acting on the limbs, but not those acting on the neck.


Sign in / Sign up

Export Citation Format

Share Document