Resistive exercises, with or without whole body vibration, prevent vertebral marrow fat accumulation during 60 days of head-down tilt bed rest in men

2012 ◽  
Vol 112 (11) ◽  
pp. 1824-1831 ◽  
Author(s):  
Guy Trudel ◽  
Elizabeth Coletta ◽  
Ian Cameron ◽  
Daniel L. Belavý ◽  
Martin Lecompte ◽  
...  

Fat accumulates in the bone marrow of lumbar vertebrae with bed rest. Exercise with or without whole body vibration may counter this effect. Our objectives were to measure 1) the vertebral fat fraction (VFF) of men subjected to bed rest who performed resistive exercises with (RVE, n = 7) or without whole body vibration(RE, n = 8) or no exercise (CTR, n = 9) using three MRI techniques; and 2) changes in peripheral blood counts. Twenty-four healthy men (age: 20–45 yr) underwent −6° head-down tilt (HDT) bed rest for 60 days. MRI was performed using three techniques (fat saturation, proton spectroscopy, and in and out of phase) to measure the fat fraction of L3, L4, and/or L5 at baseline, mid-HDT, and end-HDT. Erythrocytes and leukocytes were counted at HDT days 19, 33, 47, 54, and 60. The mean absolute VFF was increased in the CTR group at mid-HDT and end-HDT (+3.9 ± 1.3 and +3.6 ± 1.2%, respectively, both P < 0.05). The RE group had a smaller VFF change than the CTR group at mid-HDT (−0.9 ± 1.2 vs. +3.9 ± 1.3%, P < 0.05). The RVE group had a smaller VFF change than the CTR group at end-HDT (−2.6 ± 1.9 vs. +3.5 ± 1.2%, P < 0.05). Erythrocyte counts were increased in all groups at HDT day 19 and HDT day 33 and in the RE group at HDT day 54 (all P < 0.05). Bed rest for 60 days at −6° HDT increased lumbar VFF in men beyond natural involution. RVE and RE regimens effectively prevented VFF accumulation. Higher erythrocyte counts were not altered by RVE or RE. Whole body vibration, along with RE administered to people with prolonged immobility, may prevent fat accumulation in their bone marrow.

2009 ◽  
Vol 107 (2) ◽  
pp. 540-548 ◽  
Author(s):  
Guy Trudel ◽  
Michael Payne ◽  
Burkhard Mädler ◽  
Nanthan Ramachandran ◽  
Martin Lecompte ◽  
...  

Immobility in bed and decreased mobility cause adaptations to most human body systems. The effect of immobility on fat accumulation in hemopoietic bone marrow has never been measured prospectively. The reversibility of marrow fat accumulation and the effects on hemopoiesis are not known. In the present study, 24 healthy women (age: 25–40 yr) underwent −6° head-down bed rest for 60 days. We used MRI to noninvasively measure the lumbar vertebral fat fraction at various time points. We also measured hemoglobin, erythropoietin, reticulocytes, leukocytes, platelet count, peripheral fat mass, leptin, cortisol, and C-reactive protein during bed rest and for 1 yr after bed rest ended. Compared with baseline, the mean (± SE) fat fraction was increased after 60 days of bed rest (+2.5 ± 1.1%, P < 0.05); the increase persisted 1 yr after the resumption of regular activities (+2.3 ± 0.8%, P < 0.05). Mean hemoglobin levels were significantly decreased 6 days after bed rest ended (−1.36 ± 0.20 g/dl, P < 0.05) but had recovered at 1 yr, with significantly lower mean circulating erythropoietin levels (−3.8 ± 1.2 mU/ml, P < 0.05). Mean numbers of neutrophils and lymphocytes remained significantly elevated at 1 yr (+617 ± 218 neutrophils/μl and +498 ± 112 lymphocytes/μl, both P < 0.05). These results constitute direct evidence that bed rest irreversibly accelerated fat accumulation in hemopoietic bone marrow. The 2.5% increase in fat fraction after 60 days of bed rest was 25-fold larger than expected from historical ambulatory controls. Sixty days of bed rest accelerated by 4 yr the normal bone marrow involution. Bed rest and marrow adiposity were associated with hemopoietic stimulation. One year after subjects returned to normal activities, hemoglobin levels were maintained, with 43% lower circulating erythropoietin levels, and leukocytes remained significantly elevated across lineages. Lack of mobility alters hemopoiesis, possibly through marrow fat accumulation, with potentially wide-ranging clinical consequences.


Author(s):  
Piotr Krutki ◽  
Włodzimierz Mrówczyński ◽  
Jan Celichowski ◽  
Marcin Bączyk

Whole-body vibration (WBV) is often applied as an alternative method for strength training or to prevent muscle force decrease. Previous studies indicated that WBV induced: 1) changes in the contractile parameters predominantly of fast motor units, 2) higher motoneuron excitability, and 3) higher motoneuron firing rates at lower stimulus intensities compared with the control. In this study, we evaluated the influence of WBV on Ia monosynaptic input from muscle spindles because the tonic vibration reflex is responsible for the enhancement of muscle activity observed after WBV. The aim was to answer the question of whether repeated activation of muscle spindles during WBV may result in altered synaptic excitation of motoneurons. WBV was performed on adult male Wistar rats, 5 days per week, for 5 weeks, and each daily session consisted of four 30-s runs of vibration at 50 Hz. Fast-type medial gastrocnemius motoneurons were investigated intracellularly in deeply anesthetized animals in the experimental (n=7, 34 motoneurons) and control (n=7, 32 motoneurons) groups. Monosynaptic Ia EPSPs were evoked by electrical stimulation of afferent fibers from the synergistic lateral gastrocnemius and soleus muscles. Data were analyzed using a mixed linear model. WBV induced an increase of the mean EPSP amplitude by 28% (P=0.025), correlated with the resting membrane potential and input resistance, and a shortening of the mean EPSP rise time by 11% (P=0.012). The potentiation of synaptic excitation of motoneurons indicates that WBV may support rehabilitation or training processes aimed at increasing muscle strength on the basis of increased motoneuronal drive.


2021 ◽  
pp. 1-8
Author(s):  
Seyed Abolfazl Tohidast ◽  
Rasool Bagheri ◽  
Ziaeddin Safavi-Farokhi ◽  
Mohammad Khaleghi Hashemian ◽  
Cyrus Taghizadeh Delkhosh

Context: Chronic ankle instability (CAI) is a common problem associated with impaired postural stability. Whole-body vibration (WBV) has been developed to improve muscle function and reportedly improves postural stability. The aim of this study was to evaluate the effect of 12 sessions of WBV on postural control during standing postural task in participants with CAI. Design: A controlled clinical trial study. Methods: Sixteen participants with CAI and 16 healthy participants aged between 20 and 40 years included in this study. They received WBV (30-Hz frequency, 3 series of four 45-s exercises with a 45-s rest) for a total of 12 sessions, 2 session per week for 6 weeks. Postural control was assessed by center of pressure (COP) parameters, including mean and SD in the anterior–posterior and medial–lateral displacement during single-leg standing. Assessments were done before and immediately after the first session and after the 12th session of WBV, with opened and closed eyes associated with easy and difficult cognitive tasks. Results: The results showed that the SD of COP displacement in the x-axis was significant in eyes opened and SD of COP displacement in the x- and y-axes were significant between groups in the eyes-opened, and eyes-closed conditions (P < .05). Analysis of variance indicated that the effect of WBV training was significant for the mean of COP displacement in the y-axis. Post hoc indicated that the effect of 12 sessions of WBV on the mean of COP displacement was significant in the CAI group (P < .05). However, the acute effect of WBV was not significant on the COP displacement in all axes (P > .05). Conclusion: Higher postural sway associated with postural cognitive interactions might be considered in the rehabilitation of CAI. Twelve sessions of WBV might induce some improvement in postural control with the method of WBV used in this study.


2011 ◽  
Vol 301 (6) ◽  
pp. R1748-R1754 ◽  
Author(s):  
Mickael Coupé ◽  
Ming Yuan ◽  
Claire Demiot ◽  
Yanqiang Q. Bai ◽  
Shizhong Z. Jiang ◽  
...  

Whole body vibration with resistive exercise is a promising countermeasure against some weightlessness-induced dysfunctions. Our objective was to study whether the combination of low-magnitude whole body vibration with a resistive exercise can prevent the cardiovascular deconditioning induced by a nonstrict 60-day head-down bed rest (Earth Star International Bed Rest Experiment Project). Fourteen healthy men participated in this study. We recorded electrocardiograms and blood pressure waves by means of a noninvasive beat-by-beat measurement system (Cardiospace, integrated by Centre National d'Etudes Spatiales and Astronaut Center of China) during an orthostatic test (20 min of 75-degree head-up tilt test) before and immediately after bed rest. We estimated heart rate, blood pressure, cardiac output, stroke volume, total peripheral resistance, baroreflex sensitivity, and heart rate variability. Low-magnitude whole body vibration with resistive exercise prevented an increase of the sympathetic index (reflecting the sympathovagal balance of cardiac autonomic control) and limited the decrease of the spontaneous baroreflex sensitivity induced by 60 days of head-down bed rest. However, this countermeasure had very little effect on cardiac hemodynamics and did not improve the orthostatic tolerance. This combined countermeasure did not efficiently prevent orthostatic intolerance but prevents changes in the autonomic nervous system associated with cardiovascular deconditioning. The underlying mechanisms remain hypothetical but might involve cutaneous and muscular mechanoreceptors.


2010 ◽  
Vol 109 (6) ◽  
pp. 1801-1811 ◽  
Author(s):  
Daniel L. Belavý ◽  
Gabriele Armbrecht ◽  
Ulf Gast ◽  
Carolyn A. Richardson ◽  
Julie A. Hides ◽  
...  

To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise ( n = 7), resistive exercise only ( n = 8), or no exercise ( n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups ( P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only ( P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen ( P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.


2010 ◽  
Vol 22 (5) ◽  
pp. 1581-1591 ◽  
Author(s):  
D. L. Belavý ◽  
G. Beller ◽  
G. Armbrecht ◽  
F. H. Perschel ◽  
R. Fitzner ◽  
...  

Spine ◽  
2008 ◽  
Vol 33 (5) ◽  
pp. E121-E131 ◽  
Author(s):  
Daniel L. Belavý ◽  
Julie A. Hides ◽  
Stephen J. Wilson ◽  
Warren Stanton ◽  
Fernando C. Dimeo ◽  
...  

2019 ◽  
Vol 25 (6) ◽  
pp. 527-533
Author(s):  
Fábio Antônio Tenório de Melo ◽  
Gislane Ferreira de Melo ◽  
Severino Leão de Albuquerque Neto ◽  
Rogério Wagner da Silva ◽  
Nanci Maria de França ◽  
...  

ABSTRACT Obesity is a chronic degenerative disease. Whole-body vibration (WBV) devices make it possible to control the intensity of exercises through their variables: frequency, amplitude and vibration time, thus enabling interventions in these populations. The objective of this study was to review the applications, protocols and results of WBV devices in obese individuals. A systematic literature review was conducted using the descriptors and terms verified in DeCS (LILACS and SCIELO) and MeSH (PubMED). Of the thirteen studies selected, seven used an experimental and six a quasi-experimental methodological design. Eleven studies analyzed chronic responses and two studies acute responses to WBV training. Frequency values ranged between 30 and 35 Hz, amplitude was around 2 mm, and in terms of intensity, most of the training protocols used a gradual increase in WBV throughout the intervention. Eight studies added dynamic exercises and extra loads to the WBV. The mean total WBV exposure time varied around 20’ distributed in 1 or 2 series, with vibration times of 30” to 60” and the same rest time. The mean frequency of interventions was around 2 to 3 times a week, with a mean intervention time of 10 months. The main results include: decrease in body weight and improvement in the physiological variables of oxygen absorption, bone mineral density and arterial profile, indicating that WBV can be a safe tool in the fight against obesity and its implications. Level of Evidence II. Systematic Review of Level II Studies.


Sign in / Sign up

Export Citation Format

Share Document