Effect of posture on regional gas exchange in pigs

2004 ◽  
Vol 97 (6) ◽  
pp. 2104-2111 ◽  
Author(s):  
William A. Altemeier ◽  
Steve McKinney ◽  
Melissa Krueger ◽  
Robb W. Glenny

Although recent high-resolution studies demonstrate the importance of nongravitational determinants for both pulmonary blood flow and ventilation distributions, posture has a clear impact on whole lung gas exchange. Deterioration in arterial oxygenation with repositioning from prone to supine posture is caused by increased heterogeneity in the distribution of ventilation-to-perfusion ratios. This can result from increased heterogeneity in regional blood flow distribution, increased heterogeneity in regional ventilation distribution, decreased correlation between regional blood flow and ventilation, or some combination of the above (Wilson TA and Beck KC, J Appl Physiol 72: 2298–2304, 1992). We hypothesize that, although repositioning from prone to supine has relatively small effects on overall blood flow and ventilation distributions, regional changes are poorly correlated, resulting in regional ventilation-perfusion mismatch and reduction in alveolar oxygen tension. We report ventilation and perfusion distributions in seven anesthetized, mechanically ventilated pigs measured with aerosolized and injected microspheres. Total contributions of pulmonary structure and posture on ventilation and perfusion heterogeneities were quantified by using analysis of variance. Regional gradients of posture-mediated change in ventilation, perfusion, and calculated alveolar oxygen tension were examined in the caudocranial and ventrodorsal directions. We found that pulmonary structure was responsible for 74.0 ± 4.7% of total ventilation heterogeneity and 63.3 ± 4.2% of total blood flow heterogeneity. Posture-mediated redistribution was primarily oriented along the caudocranial axis for ventilation and along the ventrodorsal axis for blood flow. These mismatched changes reduced alveolar oxygen tension primarily in the dorsocaudal lung region.

2000 ◽  
Vol 88 (5) ◽  
pp. 1551-1557 ◽  
Author(s):  
William A. Altemeier ◽  
Steve McKinney ◽  
Robb W. Glenny

High-resolution measurements of pulmonary perfusion reveal substantial spatial heterogeneity that is fractally distributed. This observation led to the hypothesis that the vascular tree is the principal determinant of regional blood flow. Recent studies using aerosol deposition show similar ventilation heterogeneity that is closely correlated with perfusion. We hypothesize that ventilation has fractal characteristics similar to blood flow. We measured regional ventilation and perfusion with aerosolized and injected fluorescent microspheres in six anesthetized, mechanically ventilated pigs in both prone and supine postures. Adjacent regions were clustered into progressively larger groups. Coefficients of variation were calculated for each cluster size to determine fractal dimensions. At the smallest size lung piece, local ventilation and perfusion are highly correlated, with no significant difference between ventilation and perfusion heterogeneity. On average, the fractal dimension of ventilation is 1.16 in the prone posture and 1.09 in the supine posture. Ventilation has fractal properties similar to perfusion. Efficient gas exchange is preserved, despite ventilation and perfusion heterogeneity, through close correlation. One potential explanation is the similar geometry of bronchial and vascular structures.


2002 ◽  
Vol 92 (2) ◽  
pp. 745-762 ◽  
Author(s):  
Hung Chang ◽  
Stephen J. Lai-Fook ◽  
Karen B. Domino ◽  
Carmel Schimmel ◽  
Jack Hildebrandt ◽  
...  

We aimed to assess the influence of lateral decubitus postures and positive end-expiratory pressure (PEEP) on the regional distribution of ventilation and perfusion. We measured regional ventilation (V˙a) and regional blood flow (Q˙) in six anesthetized, mechanically ventilated dogs in the left (LLD) and right lateral decubitus (RLD) postures with and without 10 cmH2O PEEP. Q˙ was measured by use of intravenously injected 15-μm fluorescent microspheres, and V˙a was measured by aerosolized 1-μm fluorescent microspheres. Fluorescence was analyzed in lung pieces ∼1.7 cm3 in volume. Multiple linear regression analysis was used to evaluate three-dimensional spatial gradients ofQ˙, V˙a, the ratio V˙a/Q˙, and regional Po 2 (PrO2 ) in both lungs. In the LLD posture, a gravity-dependent vertical gradient in Q˙ was observed in both lungs in conjunction with a reduced blood flow and PrO2 to the dependent left lung. Change from the LLD to the RLD or 10 cmH2O PEEP increased localV˙a/Q˙ and PrO2 in the left lung and minimized any role of hypoxia. The greatest reduction in individual lung volume occurred to the left lung in the LLD posture. We conclude that lung distortion caused by the weight of the heart and abdomen is greater in the LLD posture and influences both Q˙ andV˙a, and ultimately gas exchange. In this respect, the smaller left lung was the most susceptible to impaired gas exchange in the LLD posture.


1998 ◽  
Vol 85 (6) ◽  
pp. 2337-2343 ◽  
Author(s):  
William A. Altemeier ◽  
H. Thomas Robertson ◽  
Steve McKinney ◽  
Robb W. Glenny

To explore mechanisms of hypoxemia after acute pulmonary embolism, we measured regional pulmonary blood flow and alveolar ventilation before and after embolization with 780-μm beads in five anesthetized, mechanically ventilated pigs. Regional ventilation and perfusion were determined in ∼2.0-cm3 lung volumes by using 1-μm-diameter aerosolized and 15-μm-diameter injected fluorescent microspheres. Hypoxemia after embolization resulted from increased perfusion to regions with low ventilation-to-perfusion ratios. Embolization caused an increase in perfusion heterogeneity and a fall in the correlation between ventilation and perfusion. Correlation between regional ventilation pre- and postembolization was greater than correlation between regional perfusion pre- and postembolization. The majority of regional ventilation-to-perfusion ratio heterogeneity was attributable to changes in regional perfusion. Regional perfusion redistribution without compensatory changes in regional ventilation is responsible for hypoxemia after pulmonary vascular embolization in pigs.


2000 ◽  
Vol 89 (6) ◽  
pp. 2263-2267 ◽  
Author(s):  
Robb W. Glenny ◽  
H. Thomas Robertson ◽  
Michael P. Hlastala

To determine whether vasoregulation is an important cause of pulmonary perfusion heterogeneity, we measured regional blood flow and gas exchange before and after giving prostacyclin (PGI2) to baboons. Four animals were anesthetized with ketamine and mechanically ventilated. Fluorescent microspheres were used to mark regional perfusion before and after PGI2 infusion. The lungs were subsequently excised, dried inflated, and diced into ∼2-cm3 pieces ( n = 1,208–1,629 per animal) with the spatial coordinates recorded for each piece. Blood flow to each piece was determined for each condition from the fluorescent signals. Blood flow heterogeneity did not change with PGI2 infusion. Two other measures of spatial blood flow distribution, the fractal dimension and the spatial correlation, did not change with PGI2 infusion. Alveolar-arterial O2 differences did not change with PGI2 infusion. We conclude that, in normal primate lungs during normoxia, vasomotor tone is not a significant cause of perfusion heterogeneity. Despite the heterogeneous distribution of blood flow, active regulation of regional perfusion is not required for efficient gas exchange.


2012 ◽  
Vol 113 (2) ◽  
pp. 340-352 ◽  
Author(s):  
Johan Petersson ◽  
Robb W. Glenny

Several methods allow regional gas exchange to be inferred from imaging of regional ventilation and perfusion (V/Q) ratios. Each method measures slightly different aspects of gas exchange and has inherent advantages and drawbacks that are reviewed. Single photon emission computed tomography can provide regional measure of ventilation and perfusion from which regional V/Q ratios can be derived. PET methods using inhaled or intravenously administered nitrogen-13 provide imaging of both regional blood flow, shunt, and ventilation. Electric impedance tomography has recently been refined to allow simultaneous measurements of both regional ventilation and blood flow. MRI methods utilizing hyperpolarized helium-3 or xenon-129 are currently being refined and have been used to estimate local PaO2 in both humans and animals. Microsphere methods are included in this review as they provide measurements of regional ventilation and perfusion in animals. One of their advantages is their greater spatial resolution than most imaging methods and the ability to use them as gold standards against which new imaging methods can be tested. In general, the reviewed methods differ in characteristics such as spatial resolution, possibility of repeated measurements, radiation exposure, availability, expensiveness, and their current stage of development.


1999 ◽  
Vol 87 (1) ◽  
pp. 132-141 ◽  
Author(s):  
Steven Deem ◽  
Richard G. Hedges ◽  
Steven McKinney ◽  
Nayak L. Polissar ◽  
Michael K. Alberts ◽  
...  

Severe anemia is associated with remarkable stability of pulmonary gas exchange (S. Deem, M. K. Alberts, M. J. Bishop, A. Bidani, and E. R. Swenson. J. Appl. Physiol. 83: 240–246, 1997), although the factors that contribute to this stability have not been studied in detail. In the present study, 10 Flemish Giant rabbits were anesthetized, paralyzed, and mechanically ventilated at a fixed minute ventilation. Serial hemodilution was performed in five rabbits by simultaneous withdrawal of blood and infusion of an equal volume of 6% hetastarch; five rabbits were followed over a comparable time. Ventilation-perfusion (V˙a/Q˙) relationships were studied by using the multiple inert-gas-elimination technique, and pulmonary blood flow distribution was assessed by using fluorescent microspheres. Expired nitric oxide (NO) was measured by chemiluminescence. Hemodilution resulted in a linear fall in hematocrit over time, from 30 ± 1.6 to 11 ± 1%. Anemia was associated with an increase in arterial [Formula: see text] in comparison with controls ( P < 0.01 between groups). The improvement in O2 exchange was associated with reducedV˙a/Q˙heterogeneity, a reduction in the fractal dimension of pulmonary blood flow ( P = 0.04), and a relative increase in the spatial correlation of pulmonary blood flow ( P = 0.04). Expired NO increased with anemia, whereas it remained stable in control animals ( P < 0.0001 between groups). Anemia results in improved gas exchange in the normal lung as a result of an improvement in overallV˙a/Q˙matching. In turn, this may be a result of favorable changes in pulmonary blood flow distribution, as assessed by the fractal dimension and spatial correlation of blood flow and as a result of increased NO availability.


1995 ◽  
Vol 221 (5) ◽  
pp. 531-542 ◽  
Author(s):  
John J. Ferrara ◽  
D. Lynn Dyess ◽  
Guy L. Peeples ◽  
D. Paul Christenberry ◽  
W. Scott Roberts ◽  
...  

2002 ◽  
Vol 96 (6) ◽  
pp. 1478-1484 ◽  
Author(s):  
Sören Schramm ◽  
Reto Wettstein ◽  
Robert Wessendorf ◽  
Stephan M. Jakob ◽  
Andrej Banic ◽  
...  

Background The flaps used in reconstructive surgery are prone to ischemia and hypoxia, which imply a considerable risk of wound-healing complications. During normovolemic hemodilution, the oxygenation may further deteriorate because of the lack of erythrocytes or improve because of increased microcirculatory blood flow. The aim of this study was to investigate the net effect of normovolemic hemodilution of various degrees on the microcirculation and oxygenation in ischemic flap tissue in adult minipigs. Methods A rectangular flap was raised in the middle of the epigastrium, consisting of an adequately perfused portion and a partly ischemic portion. The animals were randomly assigned to either the control group (n = 10) or the experimental group (n = 10) receiving graded normovolemic hemodilution with 6% hydroxyethyl starch 200-0.5. Results Normovolemic hemodilution caused a significant linear increase in total blood flow to the flap (measured by transit time flowmetry). In the ischemic flap tissue, both oxygen tension (measured by polarographic cells) and venous base excess were transiently improved during hemodilution (F = 4.79 and P = 0.019 for the regression of tissue oxygen tension on hemoglobin and hemoglobin squared, and F = 4.18 and P = 0.029 for base excess). The expected values reached a peak at hemoglobin concentrations of 9.1 and 8.5 g/dl, respectively. The measured values at this level of hemodilution were 17 +/- 10.7 mmHg (mean +/- SD) versus 7.6 +/- 1.9 mmHg (baseline) for oxygen tension and -1.7 +/- 3.4 versus -5.6 +/- 4.1 mM for venous base excess. Conclusions Our results suggest that the oxygenation in ischemic and hypoxic flap tissue may be improved by normovolemic hemodilution. The maximal benefit may be expected at a hemoglobin concentration at or slightly less than 9 g/dl.


2003 ◽  
Vol 10 (2) ◽  
pp. 128-138 ◽  
Author(s):  
Anne V Clough ◽  
Steven T Haworth ◽  
David L Roerig ◽  
Eric A Hoffman ◽  
Christopher A Dawson

1980 ◽  
Vol 48 (1) ◽  
pp. 147-153 ◽  
Author(s):  
W. Nixon ◽  
A. Pack

Experimental studies have established that alveolar gas exchange is inversely relation to the molecular diffusivity of gas in the lung airways. The mechanism underlying this relationship is, however, unclear. To investigate this phenomenon, the conditions relevant to the experimental studies are simulated using a computational model of pulmonary gas transport. Results from these simulations suggest that the inverse relationship found experimentally can largely be explained on the basis of the intra-acinar stratification of blood flow and gas concentrations. Gas having a relatively low molecular diffusivity is not transported as far into the acinus as gas having a higher diffusivity. When these relative intra-acinar gas distributions interact with the blood flow distribution, which has been shown experimentally to be weighted towards the proximal alveoli, more gas exchange occurs in the low molecular diffusivity mixture. Consideration of the various other mechanisms that have been proposed to explain the experimental findings.he inverse dependence suggests that they are of little significance. In particular, our studies remove the need to invoke Taylor diffusion to explain the experimental findings.


Sign in / Sign up

Export Citation Format

Share Document