scholarly journals Features of glossopharyngeal breathing in breath-hold divers

2006 ◽  
Vol 101 (3) ◽  
pp. 799-801 ◽  
Author(s):  
Leigh M. Seccombe ◽  
Peter G. Rogers ◽  
Nghi Mai ◽  
Chris K. Wong ◽  
Leonard Kritharides ◽  
...  

One technique employed by competitive breath-hold divers to increase diving depth is to hyperinflate the lungs with glossopharyngeal breathing (GPB). Our aim was to assess the relationship between measured volume and pressure changes due to GPB. Seven healthy male breath-hold divers, age 33 ( 8 ) [mean (SD)] years were recruited. Subjects performed baseline body plethysmography (TLCPRE). Plethysmography and mouth relaxation pressure were recorded immediately following a maximal GPB maneuver at total lung capacity (TLC) (TLCGPB) and within 5 min after the final GPB maneuver (TLCPOST). Mean TLC increased from TLCPRE to TLCGPB by 1.95 (0.66) liters and vital capacity (VC) by 1.92 (0.56) liters ( P < 0.0001), with no change in residual volume. There was an increase in TLCPOST compared with TLCPRE of 0.16 liters (0.14) ( P < 0.02). Mean mouth relaxation pressure at TLCGPB was 65 (19) cmH2O and was highly correlated with the percent increase in TLC ( R = 0.96). Breath-hold divers achieve substantial increases in measured lung volumes using GPB primarily from increasing VC. Approximately one-third of the additional air was accommodated by air compression.

1981 ◽  
Vol 51 (2) ◽  
pp. 313-316 ◽  
Author(s):  
F. Ruff ◽  
R. R. Martin ◽  
J. Milic-Emili

By use of 133Xe, the regional distribution of residual volume (RV) was measured in six seated healthy men, following a fast vital capacity (VC) expiration a) without and b) with a breath hold at residual volume of approximately 30 s and c) following a slow (greater than 30 s) VC expiration from total lung capacity (TLC) without a breath hold at RV. After the breath hold at RV, regional RV/TLC in the lower lung zones decreased significantly compared wih results obtained with fast expiratory VC and no breath hold at RV. At lung top the opposite was true. The distribution of regional RV/TLC was the same following the slow VC expiration with no breath hold at RV as with the fast expiration with the breath hold at RV. The different regional distribution of RV in b and c relative to a was probably due mainly to collateral ventilation, i.e., during the breath hold at RV and the slow expiration some of the gas that was trapped in the dependent lung zones behind closed airways escaped into the upper regions of the lung where the small airways had remained patent, leading to increased expansion of upper alveoli.


1997 ◽  
Vol 83 (1) ◽  
pp. 291-296 ◽  
Author(s):  
David Cohn ◽  
Joshua O. Benditt ◽  
Scott Eveloff ◽  
F. Dennis McCool

Cohn, David, Joshua O. Benditt, Scott Eveloff, and F. Dennis McCool. Diaphragm thickening during inspiration. J. Appl. Physiol. 83(1): 291–296, 1997.—Ultrasound has been used to measure diaphragm thickness ( T di) in the area where the diaphragm abuts the rib cage (zone of apposition). However, the degree of diaphragm thickening during inspiration reported as obtained by one-dimensional M-mode ultrasound was greater than that predicted by using other radiographic techniques. Because two-dimensional (2-D) ultrasound provides greater anatomic definition of the diaphragm and neighboring structures, we used this technique to reevaluate the relationship between lung volume and T di. We first established the accuracy and reproducibility of 2-D ultrasound by measuring T diwith a 7.5-MHz transducer in 26 cadavers. We found that T di measured by ultrasound correlated significantly with that measured by ruler ( R 2 = 0.89), with the slope of this relationship approximating a line of identity ( y = 0.89 x + 0.04 mm). The relationship between lung volume and T di was then studied in nine subjects by obtaining diaphragm images at the five target lung volumes [25% increments from residual volume (RV) to total lung capacity (TLC)]. Plots of T di vs. lung volume demonstrated that the diaphragm thickened as lung volume increased, with a more rapid rate of thickening at the higher lung volumes [ T di = 1.74 vital capacity (VC)2 + 0.26 VC + 2.7 mm] ( R 2= 0.99; P < 0.001) where lung volume is expressed as a fraction of VC. The mean increase in T di between RV and TLC for the group was 54% (range 42–78%). We conclude that 2-D ultrasound can accurately measure T di and that the average thickening of the diaphragm when a subject is inhaling from RV to TLC using this technique is in the range of what would be predicted from a 35% shortening of the diaphragm.


1991 ◽  
Vol 71 (4) ◽  
pp. 1216-1224 ◽  
Author(s):  
J. D. Blanchard ◽  
J. Heyder ◽  
C. R. O'Donnell ◽  
J. D. Brain

This study evaluated the ability of aerosol-derived lung morphometry to noninvasively probe airway and acinar dimensions. Effective air-space diameters (EAD) were calculated from the time-dependent gravitational losses of 1-microns particles from inhaled aerosol boluses during breath holding. In 17 males [33 +/- 7 (SD) yr] the relationship between EAD and volumetric penetration of the bolus into the lungs (Vp) could be expressed by the linear power-law function, log (EAD) alpha beta log (Vp). Our EAD values were consistent with Weibel's symmetric lung model A for small airways and more distal air spaces. As lung volume increased from 57 to 87% of total lung capacity (TLC), EAD at Vp of 160 and 550 cm3 increased 70 and 41%, respectively. At 57% TLC, log (EAD) at 160 cm3 was significantly correlated with airway resistance (r = -0.57, P less than 0.0204) but not with forced expired flow between 25 and 75% of vital capacity. Log (EAD) at 400 cm3 was correlated with deposition of 1-micron particles (r = -0.73, P less than 0.0009). We conclude that aerosol-derived lung morphometry is a responsive noninvasive probe of peripheral air-space diameters.


1959 ◽  
Vol 14 (5) ◽  
pp. 727-732 ◽  
Author(s):  
Tsung O. Cheng ◽  
Malcolm P. Godfrey ◽  
Richard H. Shepard

The relationship between pulmonary resistance and the state of inflation of the lung was estimated throughout the expired vital capacity, using the multiple interrupter of Clements and Elam and a servo-spirometer. In normal subjects the pulmonary resistance was lowest near full inflation and remained relatively constant until about 80% of the vital capacity had been expired. It then rose abruptly and approached infinity at full expiration. In patients with obstructed airways, this relationship was altered in one of several ways: 1) normal resistance near full inflation increasing to high levels early in the expired vital capacity, 2) high resistance near full inflation with little further rise until late in expiration and 3) various combinations of the above. The first pattern probably reflects changes in the small, relatively flaccid airways while the second pattern probably reflects changes in the large, relatively rigid airways or in pulmonary viscous resistance. The type of relationship between resistance and lung volume also appears to influence the partition of the total lung capacity. Submitted on February 17, 1959


1981 ◽  
Vol 60 (1) ◽  
pp. 11-15 ◽  
Author(s):  
T. Higenbottam ◽  
T. J. H. Clark

1. Forced exhalations performed from volumes below total lung capacity, so-called partial expiratory flow-volume curves, are suggested to be more sensitive in detecting airways bronchoconstriction than maximal expiratory flow-volume curves begun at total lung capacity. 2. In eight healthy men both maximal and partial expiratory flow-volume curves were measured where breath was held at total lung capacity or 70% of vital capacity respectively, for either 0 or 15 s before performing the forced exhalation. An histamine aerosol was used to provoke bronchoconstriction. 3. The results showed that the 15 s breath hold caused greater reduction in expiratory flow rates after histamine for both maximal and partial expiratory flow-volume curves than either manoeuvres performed with no breath hold. 4. A breath hold of 15 s at total lung capacity appeared to make the maximal expiratory flow-volume curve as sensitive as a partial expiratory flow-volume curve in detecting the response to histamine as well as providing measurements of forced expiratory volume in 1 s and vital capacity. Forced spirometry after a 15 s breath hold at total lung capacity therefore provides an easy and sensitive technique for detecting bronchoconstriction.


PEDIATRICS ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 181-193
Author(s):  
C. D. Cook ◽  
P. J. Helliesen ◽  
L. Kulczycki ◽  
H. Barrie ◽  
L. Friedlander ◽  
...  

Tidal volume, respiratory rate and lung volumes have been measured in 64 patients with cystic fibrosis of the pancreas while lung compliance and resistance were measured in 42 of these. Serial studies of lung volumes were done in 43. Tidal volume was reduced and the respiratory rate increased only in the most severely ill patients. Excluding the three patients with lobectomies, residual volume and functional residual capacity were found to be significantly increased in 46 and 21%, respectively. These changes correlated well with the roentgenographic evaluation of emphysema. Vital capacity was significantly reduced in 34% while total lung capacity was, on the average, relatively unchanged. Seventy per cent of the 61 patients had a signficantly elevated RV/TLC ratio. Lung compliance was significantly reduced in only the most severely ill patients but resistance was significantly increased in 35% of the patients studied. The serial studies of lung volumes showed no consistent trends among the groups of patients in the period between studies. However, 10% of the surviving patients showed evidence of significant improvement while 15% deteriorated. [See Fig. 8. in Source Pdf.] Although there were individual discrepancies, there was a definite correlation between the clinical evaluation and tests of respiratory function, especially the changes in residual volume, the vital capacity, RV/ TLC ratio and the lung compliance and resistance.


1996 ◽  
Vol 81 (3) ◽  
pp. 1111-1114 ◽  
Author(s):  
G. E. Tzelepis ◽  
L. Nasiff ◽  
F. D. McCool ◽  
J. Hammond

The extent to which transmission of pressure within the abdomen is accomplished in accordance with the laws of fluid mechanics, i.e., homogeneous transmission to all portions of the abdomen, is controversial. To examine the cranial-to-caudal as well as side-to-side transmission of pressure within the abdomen in humans, we measured intra-abdominal pressure at four sites in five subjects undergoing colonoscopy. Liquid-filled catheters were inserted into the colon, and intracolonic pressure was measured in the rectum and in transverse, descending, and sigmoid colon. Differences in intracolonic pressure were recorded during breaths to total lung capacity and brief expulsive maneuvers. Measurements were taken in the supine, right lateral, and seated position. Comparison of pressure swings at all sites showed that the pressure changes were nearly equal during both inspiratory and expulsive maneuvers. The changes in pressure were uniform in the cephalocaudal axis as from side to side. We conclude that transmission of abdominal pressure in humans is nearly homogeneous. Our findings provide support for the hydraulic model of abdominal mechanics.


1977 ◽  
Vol 42 (4) ◽  
pp. 508-513 ◽  
Author(s):  
N. E. Brown ◽  
E. R. McFadden ◽  
R. H. Ingram

Bronchia reactivity to inhaled histamine was assessed in asymptomatic cigarette smokers and in nonsmoking atopic and nonatopic subjects. The only prechallenge between-group difference was the ratio of maximal flow on 80% helium-20% oxygen (Vmax HeO2) to maximal flow on air (Vmax air) from partial expiratory flow volume curves at 25% vital capacity (25% VC PEFV): Mean +/- SEM for smokers 1.18 /+- 0.06, atopics 1.45 +/- 0.08, nonatopics 1.51 +/- 0.03. This suggests that prior to inhalation to total lung capacity, the predominant site of resistance at flow limitation was in smaller airways of the smokers and in larger airways of both groups of nonsmokers. Following inhalation of histamine, smokers and nonatopics had similar changes in lung volumes and Vmax air which were less than in atopics. The Vmax HeO2/Vmax air ratios at 25% VC PEFV increased in smokers and decreased in nonsmokers: smokers 1.48 +/- 0.08, atopics 1.22 +/- 0.10, nontopics 1.16 +/- 0.06. This suggests a predominant large airway response in smokers and a prominent small airway response in nonsmokers. These responses may reflect differences in the predominant site of aerosol deposition rather than in airway reactivity.


1989 ◽  
Vol 66 (1) ◽  
pp. 304-312 ◽  
Author(s):  
G. D. Phillips ◽  
S. T. Holgate

To investigate possible mediator interaction in asthma, the effect of inhaled leukotriene (LT) C4 on bronchoconstriction provoked by histamine and prostaglandin (PG) D2 was studied in nine asthmatic subjects. The provocation doses of histamine, PGD2, and LTC4 required to produce a 12.5% decrease in baseline forced expiratory volume in 1 s (FEV1, PD12.5) and to further this fall to 25% (PD25–12.5) were determined. On three subsequent occasions, subjects inhaled either the PD12.5 LTC4 plus vehicle or vehicle plus the PD25–12.5 of either histamine or PGD2, and FEV1 and maximal flow at 70% of vital capacity below total lung capacity after a forced partial expiratory maneuver (Vp30) followed for 45 min. From these results, predicted time-course curves for LTC4 with histamine and LTC4 with PGD2 were calculated. On two final occasions, airway caliber was followed for 45 min after inhalation of the PD12.5 LTC4 followed by the PD25–12.5 of either histamine or PGD2. During the first 9 min after LTC4-histamine and LTC4-PGD2, the decreases in airway caliber were greater than the calculated predicted response. This interaction, although small, was significant with LTC4-PGD2 for both FEV1 (P = 0.01) and Vp30 (P less than 0.05) and with LTC4-histamine for Vp30 (P less than 0.05) but not for FEV1 (P less than 0.05). We conclude that inhaled LTC4 interacts synergistically with histamine and PGD2 and that this effect, although small, may be a relevant interaction in asthma.


1988 ◽  
Vol 65 (3) ◽  
pp. 1281-1285
Author(s):  
R. R. Martin ◽  
R. Peslin ◽  
C. Duvivier ◽  
C. Gallina

Alveolar gas volume (AGV) may be measured in humans (Peslin et al., J. Appl. Physiol. 62: 359-363, 1987) by applying very slow sinusoidal variations of ambient pressure (delta Pam) around the body and studying the relationship between delta Pam and the resulting gas displacement at the mouth (delta Vaw): AGVapc = (PB.delta Vaw)/(delta Pam.cos phi), where AGVapc is AGV measured by ambient pressure changes, PB is barometric minus alveolar water vapor pressure, and phi is the phase angle between Pam and Vaw. The applicability of this method to excised lungs at various transpulmonary pressures was assessed in six rabbit lungs and three dog lobes by reference to AGV measurements by He dilution (AGVdil) and by a volumetric method (AGVvol). Except in one instance, AGVapc did not change significantly when the frequency of delta Pam was varied from 0.02 to 0.2 Hz. AGVapc was highly correlated (P less than 0.001) to both AGVdil and AGVvol. It did not differ significantly from AGVdil (81.4 +/- 50.6 vs. 80.2 +/- 44.2 ml) and was only marginally higher than AGVvol (64.6 +/- 26.9 vs. 62.4 +/- 24.4 ml, P less than 0.05). We conclude that the method usually provides accurate results in excised lung preparations. Its main advantages are that it does not require manipulating the lung or changing its volume and that the measurement takes less than 1 min.


Sign in / Sign up

Export Citation Format

Share Document