Airway responses to inhaled histamine in asymptomatic smokers and nonsmokers

1977 ◽  
Vol 42 (4) ◽  
pp. 508-513 ◽  
Author(s):  
N. E. Brown ◽  
E. R. McFadden ◽  
R. H. Ingram

Bronchia reactivity to inhaled histamine was assessed in asymptomatic cigarette smokers and in nonsmoking atopic and nonatopic subjects. The only prechallenge between-group difference was the ratio of maximal flow on 80% helium-20% oxygen (Vmax HeO2) to maximal flow on air (Vmax air) from partial expiratory flow volume curves at 25% vital capacity (25% VC PEFV): Mean +/- SEM for smokers 1.18 /+- 0.06, atopics 1.45 +/- 0.08, nonatopics 1.51 +/- 0.03. This suggests that prior to inhalation to total lung capacity, the predominant site of resistance at flow limitation was in smaller airways of the smokers and in larger airways of both groups of nonsmokers. Following inhalation of histamine, smokers and nonatopics had similar changes in lung volumes and Vmax air which were less than in atopics. The Vmax HeO2/Vmax air ratios at 25% VC PEFV increased in smokers and decreased in nonsmokers: smokers 1.48 +/- 0.08, atopics 1.22 +/- 0.10, nontopics 1.16 +/- 0.06. This suggests a predominant large airway response in smokers and a prominent small airway response in nonsmokers. These responses may reflect differences in the predominant site of aerosol deposition rather than in airway reactivity.

1979 ◽  
Vol 47 (1) ◽  
pp. 8-12 ◽  
Author(s):  
C. F. O'Cain ◽  
M. J. Hensley ◽  
E. R. McFadden ◽  
R. H. Ingram

We examined the bronchoconstriction produced by airway hypocapnia in normal subjects. Maximal expiratory flow at 25% vital capacity on partial expiratory flow-volume (PEFV) curves fell during hypocapnia both on air and on an 80% helium- 20% oxygen mixture. Density dependence also fell, suggesting predominantly small airway constriction. The changes seen on PEFV curves were not found on maximal expiratory flow-volume curves, indicating the inhalation to total lung capacity substantially reversed the constriction. Pretreatment with a beta-sympathomimetic agent blocked the response, whereas atropine pretreatment did not, suggesting that hypocapnia affects airway smooth muscle directly, not via cholinergic efferents.


1989 ◽  
Vol 66 (1) ◽  
pp. 304-312 ◽  
Author(s):  
G. D. Phillips ◽  
S. T. Holgate

To investigate possible mediator interaction in asthma, the effect of inhaled leukotriene (LT) C4 on bronchoconstriction provoked by histamine and prostaglandin (PG) D2 was studied in nine asthmatic subjects. The provocation doses of histamine, PGD2, and LTC4 required to produce a 12.5% decrease in baseline forced expiratory volume in 1 s (FEV1, PD12.5) and to further this fall to 25% (PD25–12.5) were determined. On three subsequent occasions, subjects inhaled either the PD12.5 LTC4 plus vehicle or vehicle plus the PD25–12.5 of either histamine or PGD2, and FEV1 and maximal flow at 70% of vital capacity below total lung capacity after a forced partial expiratory maneuver (Vp30) followed for 45 min. From these results, predicted time-course curves for LTC4 with histamine and LTC4 with PGD2 were calculated. On two final occasions, airway caliber was followed for 45 min after inhalation of the PD12.5 LTC4 followed by the PD25–12.5 of either histamine or PGD2. During the first 9 min after LTC4-histamine and LTC4-PGD2, the decreases in airway caliber were greater than the calculated predicted response. This interaction, although small, was significant with LTC4-PGD2 for both FEV1 (P = 0.01) and Vp30 (P less than 0.05) and with LTC4-histamine for Vp30 (P less than 0.05) but not for FEV1 (P less than 0.05). We conclude that inhaled LTC4 interacts synergistically with histamine and PGD2 and that this effect, although small, may be a relevant interaction in asthma.


1979 ◽  
Vol 46 (3) ◽  
pp. 463-466 ◽  
Author(s):  
E. Yokoyama

Static pressure-volume (PV) curves and flow-volume (VV) curves of excised right and left rabbit lungs obtained by forced and passive deflation were compared. Deflation PV curves in which the volume was expressed as either ml/lung weight or percent total lung capacity were nearly identical between right and left lungs. Descending limbs of the forced VV curves in which the flow divided by vital capacity (VC) was plotted against %VC generally agreed between right and left lungs, although peak flow tended to be higher in left lungs. However, the flow obtained during passive deflation was higher in left lungs over most of the deflation suggesting that the resistance of proximal airways per unit volume is lower in left than in right lungs.


1992 ◽  
Vol 73 (6) ◽  
pp. 2328-2332 ◽  
Author(s):  
G. Julia-Serda ◽  
N. A. Molfino ◽  
K. R. Chapman ◽  
P. A. McClean ◽  
N. Zamel ◽  
...  

We examined the effect of volume history on the dynamic relationship between airways and lung parenchyma (relative hysteresis) in 20 asthmatic subjects. The acoustic reflection technique was employed to evaluate changes in airway cross-sectional areas during a slow continuous expiration from total lung capacity to residual volume and inspiration back to total lung capacity. Lung volume was measured continuously during this quasi-static maneuver. We studied three anatomic airway segments: extra- and intrathoracic tracheal and main bronchial segments. Plots of airway area vs. lung volume were obtained for each segment to assess the relative magnitude and direction of the airway and parenchymal hysteresis. We also performed maximal expiratory flow-volume and partial expiratory flow-volume curves and calculated the ratio of maximal to partial flow rates (M/P) at 30% of the vital capacity. We found that 10 subjects (group I) showed a significant predominance of airway over parenchymal hysteresis (P < 0.005) at the extra- and intrathoracic tracheal and main bronchial segments; these subjects had high M/P ratios [1.53 +/- 0.27 (SD)]. The other 10 subjects (group II) showed similar airway and parenchymal hysteresis for all three segments and significantly lower M/P ratios (1.16 +/- 0.20, P < 0.01). We conclude that the effect of volume history on the relative hysteresis of airway and lung parenchyma and M/P ratio at 30% of vital capacity in nonprovoked asthmatic subjects is variable. We suggest that our findings may result from heterogeneous airway tone in asthmatic subjects.


1985 ◽  
Vol 59 (1) ◽  
pp. 28-33 ◽  
Author(s):  
D. Pyszczynski ◽  
S. N. Mink ◽  
N. R. Anthonisen

We measured maximum expiratory flow-volume (MEFV) curves in six seated subjects during normal (+1 Gz) and increased (+2 and +3 Gz) gravitational stress. Full MEFV curves, initiated at total lung capacity, were recorded, as were partial MEFV curves, initiated at approximately 60% of the vital capacity. Data were acquired in all subjects breathing air at +1 and +2 Gz; results were available for three subjects breathing 80% He-20% O2 at +1 and +2 Gz, and in two subjects, results were obtained at +3 Gz. Changes in gravitational stress were not associated with changes of either full or partial MEFV curves. The known increase in differences of regional lung volume and recoil caused by increased gravitational stress did not influence maximum expiratory flow. Though increased gravitational stress probably changed regional emptying sequences little during full MEFV maneuvers, substantial changes of emptying sequence were expected during partial maneuvers. It is possible that such changes in emptying sequence occurred but were not associated with changes in maximum flow because the latter was determined by choking in central airways common to all regions.


1986 ◽  
Vol 60 (6) ◽  
pp. 1834-1838 ◽  
Author(s):  
R. B. Filuk ◽  
N. R. Anthonisen

Nine normal young men inhaled boluses of He at the onset of slow vital capacity (VC) inspirations. During the subsequent VC expirations, we measured expired flow, volume, and He concentrations. Expirations consisted of full or partial maximum expiratory flow-volume (MEFV) maneuvers. Full maneuvers were forced expirations from total lung capacity (TLC). Partial maneuvers were accomplished by expiring slowly from TLC to 70, 60, 50, and 40% VC and then initiating forced expiration. Expired He concentrations from full and partial maneuvers were compared with each other and with those resulting from slow expirations. At comparable volumes less than 50% VC, flow during partial and full MEFV maneuvers did not differ. Expired He concentrations were higher during partial maneuvers than during full ones; at the onset of partial maneuvers upper zone emptying predominated, whereas this was not the case at the same lung volumes during maneuvers initiated at TLC. We observed substantial differences in regional emptying sequence that did not influence maximum expiratory flow.


1981 ◽  
Vol 60 (1) ◽  
pp. 11-15 ◽  
Author(s):  
T. Higenbottam ◽  
T. J. H. Clark

1. Forced exhalations performed from volumes below total lung capacity, so-called partial expiratory flow-volume curves, are suggested to be more sensitive in detecting airways bronchoconstriction than maximal expiratory flow-volume curves begun at total lung capacity. 2. In eight healthy men both maximal and partial expiratory flow-volume curves were measured where breath was held at total lung capacity or 70% of vital capacity respectively, for either 0 or 15 s before performing the forced exhalation. An histamine aerosol was used to provoke bronchoconstriction. 3. The results showed that the 15 s breath hold caused greater reduction in expiratory flow rates after histamine for both maximal and partial expiratory flow-volume curves than either manoeuvres performed with no breath hold. 4. A breath hold of 15 s at total lung capacity appeared to make the maximal expiratory flow-volume curve as sensitive as a partial expiratory flow-volume curve in detecting the response to histamine as well as providing measurements of forced expiratory volume in 1 s and vital capacity. Forced spirometry after a 15 s breath hold at total lung capacity therefore provides an easy and sensitive technique for detecting bronchoconstriction.


1987 ◽  
Vol 62 (5) ◽  
pp. 2115-2120 ◽  
Author(s):  
I. Rubinstein ◽  
A. W. Vanek ◽  
P. A. McClean ◽  
R. Boucher ◽  
N. Zamel ◽  
...  

The usual method of measuring density dependence of maximum expiratory flows is superimposition at total lung capacity or residual volume of maximum expiratory flow volume (MEFV) curves obtained breathing air and a mixture of 80% He plus 20% O2 (HeO2). A major problem with this technique is the large variability in results, which has been thought to be due to errors in matching lung volumes on both gases. Accordingly, we obtained MEFV curves breathing air and HeO2 using a bag-in-the-box system so that the curves breathing the two gas mixtures could be directly superimposed without removing the mouthpiece (isovolume). Ten healthy, nonsmoking subjects performed MEFV curves on each gas mixture for six consecutive experiments. We compared the increase in flow at 50% of vital capacity (delta Vmax50) and volume of isoflow (Viso) by superimposing and matching the MEFV curves at total lung capacity, at residual volume, and using the isovolume method. The variability of each method was assessed by the mean intersubject and intrasubject coefficients of variation. In all subjects, the mean delta Vmax50 and Viso as well as their corresponding coefficients of variation were not significantly different among the three methods. We conclude that, in healthy nonsmoking young adults, the method chosen for superimposing and matching MEFV curves has no effect on the variability of delta Vmax50 and Viso.


1987 ◽  
Vol 63 (5) ◽  
pp. 2042-2047 ◽  
Author(s):  
T. R. Martin ◽  
R. G. Castile ◽  
J. J. Fredberg ◽  
M. E. Wohl ◽  
J. Mead

Within individuals, lung size as assessed by total lung capacity (TLC) or vital capacity (VC) appears to be unrelated to airway size as assessed physiologically by maximum expiratory flows (MEF). Green et al. (J. Appl. Physiol. 37: 67–74, 1974) coined the term dysanapsis (unequal growth) to express this apparent interindividual discrepancy between parenchymal and airway size. We have reexamined this discrepancy using both physiological and anatomic indexes of airway size. Airway area by acoustic reflectance (AAAR), peak expiratory flow rates (PEFR), MEF, and lung volumes were measured in 26 male and 28 female healthy nonsmoking adults. The effect of sex on these indexes of large airway size was significant when assessed in a subset of males and females whose TLC's were matched (5.0–6.5 liters). Within this subset, male AAAR was 2.79 +/- 0.45 cm2, whereas female AAAR was 1.99 +/- 0.67 cm2 (P less than 0.01). Male's PEFR and MEF after 25% of VC had been expired (MEF25) were 23% greater than those of females within this subset (P less than 0.05). For the entire group of subjects, once these sex-related differences had been accounted for, AAAR was not significantly related to TLC, whereas PEFR and MEF25 remained at best weakly related to TLC. We conclude that tracheal areas in males are significantly larger than those of females even after controlling for TLC and that after controlling for sex-related differences, tracheal size in adults is unrelated to lung size across a broad range of lung sizes.


PEDIATRICS ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 181-193
Author(s):  
C. D. Cook ◽  
P. J. Helliesen ◽  
L. Kulczycki ◽  
H. Barrie ◽  
L. Friedlander ◽  
...  

Tidal volume, respiratory rate and lung volumes have been measured in 64 patients with cystic fibrosis of the pancreas while lung compliance and resistance were measured in 42 of these. Serial studies of lung volumes were done in 43. Tidal volume was reduced and the respiratory rate increased only in the most severely ill patients. Excluding the three patients with lobectomies, residual volume and functional residual capacity were found to be significantly increased in 46 and 21%, respectively. These changes correlated well with the roentgenographic evaluation of emphysema. Vital capacity was significantly reduced in 34% while total lung capacity was, on the average, relatively unchanged. Seventy per cent of the 61 patients had a signficantly elevated RV/TLC ratio. Lung compliance was significantly reduced in only the most severely ill patients but resistance was significantly increased in 35% of the patients studied. The serial studies of lung volumes showed no consistent trends among the groups of patients in the period between studies. However, 10% of the surviving patients showed evidence of significant improvement while 15% deteriorated. [See Fig. 8. in Source Pdf.] Although there were individual discrepancies, there was a definite correlation between the clinical evaluation and tests of respiratory function, especially the changes in residual volume, the vital capacity, RV/ TLC ratio and the lung compliance and resistance.


Sign in / Sign up

Export Citation Format

Share Document