scholarly journals Baroreflex sensitivity, blood pressure buffering, and resonance: what are the links? Computer simulation of healthy subjects and heart failure patients

2007 ◽  
Vol 102 (4) ◽  
pp. 1348-1356 ◽  
Author(s):  
Hedde van de Vooren ◽  
Maaike G. J. Gademan ◽  
Cees A. Swenne ◽  
Ben J. TenVoorde ◽  
Martin J. Schalij ◽  
...  

The arterial baroreflex buffers slow (<0.05 Hz) blood pressure (BP) fluctuations, mainly by controlling peripheral resistance. Baroreflex sensitivity (BRS), an important characteristic of baroreflex control, is often noninvasively assessed by relating heart rate (HR) fluctuations to BP fluctuations; more specifically, spectral BRS assessment techniques focus on the BP-to-HR transfer function around 0.1 Hz. Skepticism about the relevance of BRS to characterize baroreflex-mediated BP buffering is based on two considerations: 1) baroreflex-modulated peripheral vasomotor function is not necessarily related to baroreflex-HR transfer; and 2) although BP fluctuations around 0.1 Hz (Mayer waves) might be related to baroreflex BP buffering, they are merely a not-intended side effect of a closed-loop control system. To further investigate the relationship between BRS and baroreflex-mediated BP buffering, we set up a computer model of baroreflex BP control to simulate normal subjects and heart failure patients. Output variables for various randomly chosen combinations of feedback gains in the baroreflex arms were BP resonance, BP-buffering capacity, and BRS. Our results show that BP buffering and BP resonance are related expressions of baroreflex BP control and depend strongly on the sympathetic gain to the peripheral resistance. BRS is almost uniquely determined by the vagal baroreflex gain to the sinus node. In conclusion, BP buffering and BRS are unrelated unless coupled gains in all baroreflex limbs are assumed. Hence, the clinical benefit of a high BRS is most likely to be attributed to vagal effects on the heart instead of to effective BP buffering.

1993 ◽  
Vol 265 (5) ◽  
pp. R1132-R1140 ◽  
Author(s):  
N. B. Olivier ◽  
R. B. Stephenson

Open-loop baroreflex responses were evaluated in eight conscious dogs before and during congestive heart failure to determine the effects of failure on baroreflex control of blood pressure, heart rate, cardiac output, and total peripheral resistance. Heart failure was induced by rapid ventricular pacing. Baroreflex function was determined by calculation of the range and gain of the open-loop stimulus-response relationships for the effect of carotid sinus pressure on blood pressure, heart rate, cardiac output, and total peripheral resistance. The range and gain of blood pressure responses were substantially reduced as early as 3 days after induction of heart failure (161 +/- 6 to 99 +/- 8 mmHg and -2.7 +/- 0.3 to -1.5 +/- 0.1, respectively) and remained depressed for the 21 days of heart failure. This depression in baroreflex control of blood pressure was associated with similar depressions in reflex range and gain for heart rate (125 +/- 9 to 78 +/- 11 beats/min and -2.05 +/- 0.2 to -1.16 +/- 0.2 beats/min, respectively) and cardiac output (1.74 +/- 0.2 to 0.46 +/- 0.2 l/min and -0.81 +/- 0.02 to -0.027 +/- 0.008 l/min, respectively). The group-averaged range and gain for reflex control of vascular resistance were not altered by heart failure. In three dogs, discontinuation of rapid ventricular pacing led to resolution of heart failure within 7 days and partial restoration of the range and gain of reflex control of blood pressure. We conclude that heart failure reversibly depresses baroreflex control of blood pressure principally through a concurrent reduction in reflex control of cardiac output, whereas reflex control of vascular resistance is not consistently affected.


2001 ◽  
Vol 280 (3) ◽  
pp. R744-R751 ◽  
Author(s):  
Marco Di Rienzo ◽  
Gianfranco Parati ◽  
Paolo Castiglioni ◽  
Roberto Tordi ◽  
Giuseppe Mancia ◽  
...  

In healthy subjects, progressive beat-to-beat increases or decreases in systolic blood pressure (SBP) ramps are not always accompanied by baroreflex-driven lengthening or shortening in pulse interval (PI) ramps, respectively. This phenomenon has been quantified by a new index, the baroreflex effectiveness index (BEI), defined as the ratio between the number of SBP ramps followed by the respective reflex PI ramps and the total number of SBP ramps observed in a given time window. Specificity of BEI was shown in eight cats by a −89% reduction of BEI after sinoaortic denervation. In 14 healthy humans, the 24-h average BEI value was 0.21, with a marked day-night modulation (≈0.25 day, ≈0.15 night) in counterphase with modulation of baroreflex sensitivity (BRS). Our analysis indicates that 1) in normal subjects, arterial baroreflex can induce beat-by-beat PI changes in response to only 21% of all SBP ramps, possibly because of central inhibitory influences or of interferences at sinus node level by nonbaroreflex mechanisms and 2) BEI provides information on the baroreflex function that is complementary to BRS.


2018 ◽  
Vol 6 (10) ◽  
pp. 889-890
Author(s):  
Mostafa Ghanim ◽  
Maxwell Eyram Afari ◽  
Lana Tsao

Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 727-727
Author(s):  
Ovidiu Baltatu ◽  
Ben J Janssen ◽  
Ralph Plehm ◽  
Detlev Ganten ◽  
Michael Bader

P191 The brain renin-angiotensin system (RAS) system may play a functional role in the long-term and short-term control of blood pressure (BPV) and heart rate variability (HRV). To study this we recorded in transgenic rats TGR(ASrAOGEN) with low brain angiotensinogen levels the 24-h variation of BP and HR during basal and hypertensive conditions, induced by a low-dose s.c. infusion of angiotensin II (Ang II, 100 ng/kg/min) for 7 days. Cardiovascular parameters were monitored by telemetry. Short-term BPV and HRV were evaluated by spectral analysis and as a measure of baroreflex sensitivity the transfer gain between the pressure and heart rate variations was calculated. During the Ang II infusion, in SD but not TGR(ASrAOGEN) rats, the 24-h rhythm of BP was inverted (5.8 ± 2 vs. -0.4 ± 1.8 mm Hg/group of day-night differences of BP, p< 0.05, respectively). In contrast, in both the SD and TGR(ASrAOGEN) rats, the 24-h HR rhythms remained unaltered and paralleled those of locomotor activity. The increase of systolic BP was significantly reduced in TGR(ASrAOGEN) in comparison to SD rats as previously described, while the HR was not altered in TGR(ASrAOGEN) nor in SD rats. The spectral index of baroreflex sensitivity (FFT gain between 0.3-0.6 Hz) was significantly higher in TGR(ASrAOGEN) than SD rats during control (0.71 ± 0.1 vs. 0.35 ± 0.06, p<0.05), but not during Ang II infusion (0.6 ± 0.07 vs. 0.4 ± 0.1, p>0.05). These results demonstrate that the brain RAS plays an important role in mediating the effects of Ang II on the circadian variation of BP. Furthermore these data are consistent with the view that the brain RAS modulates baroreflex control of HR in rats, with AII having an inhibitory role.


1990 ◽  
Vol 69 (3) ◽  
pp. 962-967 ◽  
Author(s):  
J. T. Sullebarger ◽  
C. S. Liang ◽  
P. D. Woolf ◽  
A. E. Willick ◽  
J. F. Richeson

Phenylephrine (PE) bolus and infusion methods have both been used to measure baroreflex sensitivity in humans. To determine whether the two methods produce the same values of baroreceptor sensitivity, we administered intravenous PE by both bolus injection and graded infusion methods to 17 normal subjects. Baroreflex sensitivity was determined from the slope of the linear relationship between the cardiac cycle length (R-R interval) and systolic arterial pressure. Both methods produced similar peak increases in arterial pressure and reproducible results of baroreflex sensitivity in the same subjects, but baroreflex slopes measured by the infusion method (9.9 +/- 0.7 ms/mmHg) were significantly lower than those measured by the bolus method (22.5 +/- 1.8 ms/mmHg, P less than 0.0001). Pretreatment with atropine abolished the heart rate response to PE given by both methods, whereas plasma catecholamines were affected by neither method of PE administration. Naloxone pretreatment exaggerated the pressor response to PE and increased plasma beta-endorphin response to PE infusion but had no effect on baroreflex sensitivity. Thus our results indicate that 1) activation of the baroreflex by the PE bolus and infusion methods, although reproducible, is not equivalent, 2) baroreflex-induced heart rate response to a gradual increase in pressure is less than that seen with a rapid rise, 3) in both methods, heart rate response is mediated by the vagus nerves, and 4) neither the sympathetic nervous system nor the endogenous opiate system has a significant role in mediating the baroreflex control of heart rate to a hypertensive stimulus in normal subjects.


1991 ◽  
Vol 261 (3) ◽  
pp. R677-R685 ◽  
Author(s):  
B. L. Brizzee ◽  
R. D. Russ ◽  
B. R. Walker

Experiments were performed to examine the potential role of circulating arginine vasopressin (AVP) on baroreflex sensitivity during hypotensive and nonhypotensive hemorrhage in the conscious rat. Animals were chronically instrumented for measurement of cardiac output, blood pressure, and heart rate (HR). Three potential stimuli for release of AVP were utilized: 1) rapid 20% arterial hemorrhage that resulted in hypotension, 2) nonhypovolemic hypotension induced by intravenous infusion of nitroprusside, and 3) nonhypotensive hemorrhage (rapid 10% arterial blood withdrawal). Hypotensive hemorrhage was associated with significant reductions in blood pressure, cardiac output, HR, and calculated total peripheral resistance, an increase in baroreflex (BRR) bradycardia in response to pressor infusions of phenylephrine, and a moderate elevation in circulating AVP. Prior intravenous administration of a specific V1-vasopressinergic antagonist augmented the hypotensive response to hemorrhage; however, neither V1- nor V2-blockade affected hemorrhage-induced augmentation of the BRR. Inducement of hypotension by infusion of nitroprusside did not alter subsequent BRR sensitivity. Finally, nonhypotensive hemorrhage was associated with an increase in resting HR and augmented BRR sensitivity. However, in contrast to hypotensive hemorrhage, either V1- or V2-antagonism attenuated the increase in BRR sensitivity seen with 10% hemorrhage. These data suggest that, although AVP may play a role in blood pressure maintenance via its direct vasoconstrictor actions during hypotensive hemorrhage, the observed augmentation of BRR sensitivity associated with severe blood loss is not attributable to a vasopressinergic mechanism activated by circulating AVP. However, blood-borne AVP may contribute to BRR sensitivity alterations in response to mild blood loss.


Sign in / Sign up

Export Citation Format

Share Document