scholarly journals Fatigue-induced changes in short-interval intracortical inhibition and the silent period with stimulus intensities evoking maximal versus submaximal responses

2020 ◽  
Vol 129 (2) ◽  
pp. 205-217
Author(s):  
Callum G. Brownstein ◽  
Loïc Espeit ◽  
Nicolas Royer ◽  
Thomas Lapole ◽  
Guillaume Y. Millet

This study compared the change in silent period (SP) and short-interval intracortical inhibition (SICI) with conditioning stimulus and single-pulse transcranial magnetic stimulation (TMS) intensities (for SICI and SP, respectively) eliciting maximal and submaximal SICI and SP during fatiguing exercise. The results showed that changes in SICI were only detectable with intensities evoking maximal responses, with no difference between intensities for SP. These findings highlight the importance of maximizing SICI with appropriate intensities before measuring SICI during fatiguing exercise.

2010 ◽  
Vol 103 (1) ◽  
pp. 511-518 ◽  
Author(s):  
R. F. H. Cash ◽  
U. Ziemann ◽  
K. Murray ◽  
G. W. Thickbroom

In human motor cortex transcranial magnetic stimulation (TMS) has been used to identify short-interval intracortical inhibition (SICI) corresponding to γ-aminobutyric acid type A (GABAA) effects and long-interval intracortical inhibition (LICI) and the cortical silent period (SP) corresponding to postsynaptic GABAB effects. Presynaptic GABAB effects, corresponding to disinhibition, can also be identified with TMS and have been shown to be acting during LICI by measuring SICI after a suprathreshold priming stimulus (PS). The duration of disinhibition is not certain and, guided by studies in experimental preparations, we hypothesized that it may be longer-lasting than postsynaptic inhibition, leading to a period of late cortical disinhibition and consequently a net increase in corticospinal excitability. We tested this first by measuring the motor-evoked potential (MEP) to a test stimulus (TS), delivered after a PS at interpulse intervals (IPIs) ≤300 ms that encompassed the period of PS-induced LICI and its aftermath. MEP amplitude was initially decreased, but then increased at IPIs of 190–210 ms, reaching 160 ± 17% of baseline 200 ms after PS ( P < 0.05). SP duration was 181 ± 5 ms. A second experiment established that the onset of the later period of increased excitability correlated with PS intensity ( r2 = 0.99) and with the duration of the SP ( r2 = 0.99). The third and main experiment demonstrated that SICI was significantly reduced in strength at all IPIs ≤220 ms after PS. We conclude that TMS-induced LICI is associated with a period of disinhibition that is at first masked by LICI, but that outlasts LICI and gives rise to a period during which disinhibition predominates and net excitability is raised. Identification of this late period of disinhibition in human motor cortex may provide an opportunity to explore or modulate the behavior of excitatory networks at a time when inhibitory effects are restrained.


2008 ◽  
Vol 1 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Alfredo Berardelli ◽  
Giovanni Abbruzzese ◽  
Robert Chen ◽  
Michael Orth ◽  
Michael C. Ridding ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Aulikki Ahlgrén-Rimpiläinen ◽  
Hannu Lauerma ◽  
Seppo Kähkönen ◽  
Ilpo Rimpiläinen

Aims. Schizophrenia is a neuropsychiatric disorder associated with mental and motor disturbances. We aimed to investigate motor control, especially central silent period (CSP) in subjects with schizophrenia (n=11) on long-term antipsychotic treatment compared to healthy controls (n=9). Methods. Latency and duration of motor evoked potentials (MEPs) and CSPs were measured with the help of single pulse transcranial magnetic stimulation (TMS) and intramuscular electrodes. After stimulation of the dominant and nondominant motor cortex of abductor digiti minimi (ADM) and tibialis anterior (TA) muscle areas, respective responses were measured on the contralateral side. Results. MEPs did not differ significantly between the groups. Multiple CSPs were found predominantly in subjects with schizophrenia, which showed a higher number of CSPs in the dominant ADM and the longest summarized duration of CSPs in the nondominant ADM (P<0.05) compared to controls. Conclusions. There were multiple CSPs predominantly in the upper extremities and in the dominant body side in subjects with schizophrenia. Behind multiple CSPs may lie an impaired regulation of excitatory or inhibitory neurotransmitter systems in central motor pathways. Further research is needed to clarify the role of the intramuscular recording methods and the effect of antipsychotics on the results.


NeuroImage ◽  
2019 ◽  
Vol 203 ◽  
pp. 116194 ◽  
Author(s):  
Jaakko O. Nieminen ◽  
Lari M. Koponen ◽  
Niko Mäkelä ◽  
Victor Hugo Souza ◽  
Matti Stenroos ◽  
...  

2019 ◽  
Vol 237 (6) ◽  
pp. 1503-1510 ◽  
Author(s):  
Karita S.-T. Salo ◽  
Selja M. I. Vaalto ◽  
Lari M. Koponen ◽  
Jaakko O. Nieminen ◽  
Risto J. Ilmoniemi

2019 ◽  
Vol 121 (2) ◽  
pp. 471-479 ◽  
Author(s):  
Lavender A. Otieno ◽  
George M. Opie ◽  
John G. Semmler ◽  
Michael C. Ridding ◽  
Simranjit K. Sidhu

Fatiguing intermittent single-joint exercise causes an increase in corticospinal excitability and a decrease in intracortical inhibition when measured with peripherally recorded motor evoked potentials (MEPs) after transcranial magnetic stimulation (TMS). Combined TMS and electroencephalography (TMS-EEG) allows for more direct recording of cortical responses through the TMS-evoked potential (TEP). The aim of this study was to investigate the changes in the excitatory and inhibitory components of the TEP during fatiguing single-joint exercise. Twenty-three young (22 ± 2 yr) healthy subjects performed intermittent 30-s maximum voluntary contractions of the right first dorsal interosseous muscle, followed by a 30-s relaxation period repeated for a total of 15 min. Six single-pulse TMSs and one peripheral nerve stimulation (PNS) to evoke maximal M wave (Mmax) were applied during each relaxation period. A total of 90 TMS pulses and 5 PNSs were applied before and after fatiguing exercise to record MEP and TEP. The amplitude of the MEP (normalized to Mmax) increased during fatiguing exercise ( P < 0.001). There were no changes in local and global P30, N45, and P180 of TEPs during the development of intermittent single-joint exercise-induced fatigue. Global analysis, however, revealed a decrease in N100 peak of the TEP during fatiguing exercise compared with before fatiguing exercise ( P = 0.02). The decrease in N100 suggests a fatigue-related decrease in global intracortical GABAB-mediated inhibition. The increase in corticospinal excitability typically observed during single-joint fatiguing exercise may be mediated by a global decrease in intracortical inhibition. NEW & NOTEWORTHY Fatiguing intermittent single-joint exercise causes an increase in corticospinal excitability and a decrease in intracortical inhibition when measured with transcranial magnetic stimulation (TMS)-evoked potentials from the muscle. The present study provides new and direct cortical evidence, using TMS-EEG to demonstrate that during single-joint fatiguing exercise there is a global decrease in intracortical GABAB-mediated inhibition.


Sign in / Sign up

Export Citation Format

Share Document