fatiguing exercise
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 31)

H-INDEX

28
(FIVE YEARS 4)

Author(s):  
Lavender A. Otieno ◽  
John G. Semmler ◽  
Ashleigh Elizabeth Smith ◽  
Simranjit K. Sidhu

Age-related changes in the neuromuscular system can result in differences in fatigability between young and older adults. Previous research has shown that single joint isometric fatiguing exercise of small muscle results in an age-related compensatory decrease in GABAB mediated inhibition. However, this has yet to be established in a larger muscle group. In 15 young (22 ± 4 years) and 15 older (65 ± 5 years) adults, long interval cortical inhibition (LICI; 100 ms ISI) and corticospinal silent period (SP) were measured in the biceps brachii during a 5% EMG contraction using transcranial magnetic stimulation (TMS) before, during and after a submaximal contraction (30% MVC force) held intermittently to task failure. Both age groups developed similar magnitude of fatigue (~24% decline in MVC; P = 0.001) and ~28% decline in LICI (P = 0.001) post fatiguing exercise. No change in SP duration was observed during and immediately following fatigue (P = 0.909) but ~ 6% decrease was seen at recovery in both age groups (P<0.001)." Contrary to previous work in a small muscle, these findings suggest no age-related differences in GABAB mediated inhibition following single joint isometric fatiguing exercise of the elbow flexors, indicating that GABAB modulation with ageing may be muscle group dependent. Furthermore, variations in SP duration and LICI modulation during and post fatigue in both groups suggest that these measures are likely mediated by divergent mechanisms.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nicolas Babault ◽  
Ahmad Noureddine ◽  
Nicolas Amiez ◽  
Damien Guillemet ◽  
Carole Cometti

Background:Salvia (sage) supplementation has been shown to improve the cognition function in healthy individuals or patients (e.g., attention, memory). To date, no study has explored its relevancy in the context of sporting performance. The aim of this study was to explore the acute effects of a combination of Salvia officinalis and Salvia lavandulaefolia on cognitive function in athletes performing a fatiguing cycling task.Methods: Twenty-six volunteers were included in this cross-over, randomized, double-bind vs. placebo trial. Two hours before the two experimental sessions (here called SAGE and PLACEBO), volunteers randomly received a supplementation of sage or placebo. During each experimental session, participants were tested at four occasions while cycling during a warm-up, in the middle and at the end of a fatiguing task and after a short 5-min recovery. Tests included a Stroop task, a simple reaction time task, and a backward digit span memory task. Heart rate and rating of perceived exertion (RPE) were also measured at the beginning of the four test sessions.Results: Heart rate was significantly greater during the fatiguing exercise than during warm-up and recovery (P &lt; 0.001) without any supplementation effect. RPE was greater during the fatiguing exercise than during warm-up and recovery (P &lt; 0.001). Moreover, RPE was significantly lower during the SAGE session as compared to PLACEBO (P = 0.002). Reaction time was not altered during the exercise but was significantly shorter with SAGE as compared to PLACEBO (P = 0.023). The Stroop task only revealed significantly longer reaction time during warm-up as compared to recovery (P = 0.02) independently of the supplementation. The digit span memory test revealed a significant greater span score with SAGE as compared to PLACEBO (P = 0.044).Conclusion: The combination of Salvia improved the cognitive functions (perceived exertion, working memory, and reaction time). The positive effects were obtained in fresh condition and were maintained with fatigue.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2199
Author(s):  
Mohamed Abdelhafid Kadri ◽  
Frédéric Noé ◽  
Julien Maitre ◽  
Nicola Maffulli ◽  
Thierry Paillard

The current literature shows no consensus regarding the difference between the dominant leg (D-Leg) and the non-dominant leg (ND-Leg) in terms of postural control. This lack of consensus could stem from motor experience (i.e., symmetric or asymmetric motricity) and/or the physiological state induced by physical exercise. This study aimed to investigate the acute effects of fatiguing exercise on postural control when standing on the D-Leg and the ND-Leg, in athletes practicing symmetric (SYM) and asymmetric (ASYM) sports. Thirty healthy male participants were recruited and divided into two groups, (SYM n = 15) and (ASYM n = 15, on the basis of the motricity induced by the sport they practice. Monopedal postural control was assessed for the D-Leg and the ND-Leg before and after the fatigue period (which consisted of repeating squats until exhaustion). A force platform was used to calculate the spatio-temporal characteristics of the displacements of the center of foot pressure (COP). A significant fatigue effect was observed in both groups on the D-Leg and the ND-Leg for all the COP parameters. There was a tendency (p = 0.06) between the ASYM and SYM groups on the D-Leg, concerning the relative increase in the COP velocity in the frontal plane after the fatigue period. The fatigue condition disturbed postural control in both the SYM and ASYM groups on the D-Leg and ND-Leg. This disturbing effect related to fatigue tends to be more marked in athletes practicing asymmetric sports than in athletes practicing symmetric sports on the D-Leg.


2021 ◽  
Author(s):  
Justin W Andrushko ◽  
Jacob M Levenstein ◽  
Catharina Zich ◽  
Evan C Edmond ◽  
Jon Campbell ◽  
...  

In humans, motor learning is underpinned by changes in functional connectivity (FC) across the sensorimotor network. Unilateral exercise-induced fatigue increases FC in the ipsilateral primary motor cortex (M1) and supplementary motor area (SMA); areas involved in motor planning and execution of the contralateral hand. Unilateral fatiguing exercise is therefore a promising potential approach to augment motor performance in the non-fatigued, contralateral, hand. In a within-participant, controlled, randomized, cross-over design, 15 right-handed adults had two magnetic resonance imaging (MRI) sessions, where functional MRI and MR Spectroscopic Imaging were acquired before and after repeated right-hand contractions at either 5% or 50% maximum voluntary contraction (MVC). Before and after scanning, response times (RTs) were determined in both hands, and after scanning, participants performed a serial reaction time task (SRTT) with their left, unfatigued, hand. Nine minutes of 50% MVC contractions resulted in fatigue. This unimanual fatigue improved motor performance, as indexed by decreased RTs, in the contralateral hand. Although fatigue had no significant effects on sequence learning, fatigue led to a significant increase in the transfer of the learned skill to the untrained hand. These behavioural effects were supported by significant neural changes: an increase in SMA-SMA functional connectivity, and increased connectivity between right M1 and right Orbitofrontal Cortex. At a neurochemical level, the degree of fatigue-induced decrease in GABA in left M1, left and right SMA correlated with subsequent behavioural improvements in the left-hand. These results support unilateral fatiguing exercise as a potential therapeutic intervention in a range of neurological and orthopedic conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maissa Kacem ◽  
Rihab Borji ◽  
Sonia Sahli ◽  
Haithem Rebai

This study explored the fatigue effect on postural control (PC) across menstrual cycle phases (MCPs) in female athletes. Isometric maximal voluntary contraction (IMVC), the center of pressure sway area (CoParea), CoP length in the medio-lateral (CoPLX) and antero-posterior (CoPLY) directions, and Y-balance test (YBT) were assessed before and after a fatiguing exercise during the follicular phase (FP), mid-luteal phase (LP), and premenstrual phase (PMP). Baseline normalized reach distances (NRDs) for the YBT were lower (p = 0.00) in the PMP compared to others MCPs, but the IMVC, CoParea, CoPLX, and CoPLY remained unchanged. After exercise, the IMVC and the NRD decrease was higher at PMP compared to FP (p = 0.00) and LP (p = 0.00). The CoParea, CoPLX, and CoPLY increase was higher in the PMP compared to FP (p = 0.00) and LP (p = 0.00). It was concluded that there is an accentuated PC impairment after exercise observed at PMP.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257652
Author(s):  
Sarah Tenberg ◽  
Kristin Kalo ◽  
Daniel Niederer ◽  
Lutz Vogt

Vibroarthrography measures joint sounds caused by sliding of the joint surfaces over each other. and can be affected by joint health, load and type of movement. Since both warm-up and muscle fatigue lead to local changes in the knee joint (e.g., temperature increase, lubrication of the joint, muscle activation), these may impact knee joint sounds. Therefore, this study investigates the effects of warm-up and muscle fatiguing exercise on knee joint sounds during an activity of daily living. Seventeen healthy, physically active volunteers (25.7 ± 2 years, 7 males) performed a control and an intervention session with a wash-out phase of one week. The control session consisted of sitting on a chair, while the intervention session contained a warm-up (walking on a treadmill) followed by a fatiguing exercise (modified sit-to-stand) protocol. Knee sounds were recorded by vibroarthrography (at the medial tibia plateau and at the patella) at three time points in each session during a sit-to-stand movement. The primary outcome was the mean signal amplitude (MSA, dB). Differences between sessions were determined by repeated measures ANOVA with intra-individual pre-post differences for the warm-up and for the muscle fatigue effect. We found a significant difference for MSA at the medial tibia plateau (intervention: mean 1.51 dB, standard deviation 2.51 dB; control: mean -1.28 dB, SD 2.61 dB; F = 9.5; p = .007; η2 = .37) during extension (from sit to stand) after the warm-up. There was no significant difference for any parameter after the muscle fatiguing exercise (p > .05). The increase in MSA may mostly be explained by an increase in internal knee load and joint friction. However, neuromuscular changes may also have played a role. It appears that the muscle fatiguing exercise has no impact on knee joint sounds in young, active, symptom-free participants during sit to stand.


2021 ◽  
Vol 15 ◽  
Author(s):  
Samuel D’Emanuele ◽  
Nicola A. Maffiuletti ◽  
Cantor Tarperi ◽  
Alberto Rainoldi ◽  
Federico Schena ◽  
...  

Because rate of force development (RFD) is an emerging outcome measure for the assessment of neuromuscular function in unfatigued conditions, and it represents a valid alternative/complement to the classical evaluation of pure maximal strength, this scoping review aimed to map the available evidence regarding RFD as an indicator of neuromuscular fatigue. Thus, following a general overview of the main studies published on this topic, we arbitrarily compared the amount of neuromuscular fatigue between the “gold standard” measure (maximal voluntary force, MVF) and peak, early (≤100 ms) and late (&gt;100 ms) RFD. Seventy full-text articles were included in the review. The most-common fatiguing exercises were resistance exercises (37% of the studies), endurance exercises/locomotor activities (23%), isokinetic contractions (17%), and simulated/real sport situations (13%). The most widely tested tasks were knee extension (60%) and plantar flexion (10%). The reason (i.e., rationale) for evaluating RFD was lacking in 36% of the studies. On average, the amount of fatigue for MVF (−19%) was comparable to late RFD (−19%) but lower compared to both peak RFD (−25%) and early RFD (−23%). Even if the rationale for evaluating RFD in the fatigued state was often lacking and the specificity between test task and fatiguing exercise characteristics was not always respected in the included studies, RFD seems to be a valid indicator of neuromuscular fatigue. Based on our arbitrary analyses, peak RFD and early phase RFD appear even to be more sensitive to quantify neuromuscular fatigue than MVF and late phase RFD.


2021 ◽  
pp. 1-9
Author(s):  
Evan V. Papa ◽  
Rita M. Patterson ◽  
Nicoleta Bugnariu

BACKGROUND: Nearly half of persons with Parkinson disease (PD) report fatigue as a factor in their fall history. However, it is unknown whether these self-reported falls are caused by a sensation of fatigue or performance fatigue. OBJECTIVE: We sought to investigate the influences of performance fatigue and age on postural control in persons with PD. METHODS: Individuals with PD (n = 14) underwent postural control assessments before (T0) and immediately after (T1) fatiguing exercise. Biomechanical data were gathered on participants completing a treadmill-induced, posterior-directed fall. Performance fatigue was produced using lower extremity resistance exercise on an isokinetic ergometer. Repeated measures ANCOVAs were used with age as a covariate to determine the effects of performance fatigue on biomechanical variables. RESULTS: After adjustment for age, there was a statistically significant difference in peak center of pressure (COP) latency during the support phase of recovery. Pairwise comparisons demonstrated a decrease in peak ankle displacement from T0 to T1. Age was also found to be significantly related to reaction time and peak knee displacement while participants were fatigued. CONCLUSIONS: The decreased peak COP latency, along with decreased ankle angular displacement, suggest that persons with PD adopt a stiffening strategy in response to backward directed falls. Postural stiffening is not uncommon in persons with PD and could be a risk factor for falls. Older individuals with PD demonstrate slower mobility scores and decreased reaction times in the setting of fatigue, suggesting a combined effect of the aging and fatigue processes.


Author(s):  
Jian Cui ◽  
Zhaohui Gao ◽  
Cheryl Blaha ◽  
J. Carter Luck ◽  
Kristen Brandt ◽  
...  

Prior reports show that whole-body heat stress attenuates the pressor response to exercise in young healthy subjects. The effects of moderate whole-body heating (WBH, e.g. increase in internal temperature Tcore ~0.4-0.5 °C) or limb heating on sympathetic and cardiovascular responses to exercise in older healthy humans remains unclear. We examined the muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP) and heart rate (HR) in 14 older (62 ± 2 yrs) healthy subjects during fatiguing isometric handgrip exercise and post exercise circulatory occlusion (PECO). The protocol was performed under normothermic, moderate WBH and local limb (i.e. forearm) heating conditions during 3 visits. During the mild WBH stage (increase in Tcore <0.3 °C), HR increased, whereas BP and MSNA decreased from baseline. Under the moderate WBH condition (increase in Tcore ~0.4 °C), BP decreased, HR increased, while MSNA was unchanged from baseline. Compared with the normothermic trial, the absolute MAP during fatiguing exercise and PECO were lower during the WBH trial. Moreover, MSNA and MAP responses (i.e. changes) to fatiguing exercise were also less than those seen during the normothermic trial. Limb heating induced a similar increase in forearm muscle temperature with that seen in the WBH trial (~0.7-1.5 °C). Limb heating did not alter resting MAP, HR or MSNA. The MSNA and hemodynamic responses to exercise in limb heating trial were not different from those in the normothermic trial. These data suggest that moderate WBH attenuates MSNA and BP responses to exercise in older healthy humans.


2021 ◽  
Vol 84 ◽  
pp. 1-7
Author(s):  
Jo Armour Smith ◽  
Wilford K. Eiteman-Pang ◽  
Rahul Soangra ◽  
Niklas König Ignasiak
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document