Threshold Tracked Short-Interval Intracortical Inhibition More Closely Predicts the Cortical Response to Transcranial Magnetic Stimulation

Author(s):  
Ryoki Sasaki ◽  
John G. Semmler ◽  
George M. Opie
2020 ◽  
Vol 129 (2) ◽  
pp. 205-217
Author(s):  
Callum G. Brownstein ◽  
Loïc Espeit ◽  
Nicolas Royer ◽  
Thomas Lapole ◽  
Guillaume Y. Millet

This study compared the change in silent period (SP) and short-interval intracortical inhibition (SICI) with conditioning stimulus and single-pulse transcranial magnetic stimulation (TMS) intensities (for SICI and SP, respectively) eliciting maximal and submaximal SICI and SP during fatiguing exercise. The results showed that changes in SICI were only detectable with intensities evoking maximal responses, with no difference between intensities for SP. These findings highlight the importance of maximizing SICI with appropriate intensities before measuring SICI during fatiguing exercise.


2008 ◽  
Vol 1 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Alfredo Berardelli ◽  
Giovanni Abbruzzese ◽  
Robert Chen ◽  
Michael Orth ◽  
Michael C. Ridding ◽  
...  

NeuroImage ◽  
2019 ◽  
Vol 203 ◽  
pp. 116194 ◽  
Author(s):  
Jaakko O. Nieminen ◽  
Lari M. Koponen ◽  
Niko Mäkelä ◽  
Victor Hugo Souza ◽  
Matti Stenroos ◽  
...  

2019 ◽  
Vol 237 (6) ◽  
pp. 1503-1510 ◽  
Author(s):  
Karita S.-T. Salo ◽  
Selja M. I. Vaalto ◽  
Lari M. Koponen ◽  
Jaakko O. Nieminen ◽  
Risto J. Ilmoniemi

2010 ◽  
Vol 103 (1) ◽  
pp. 511-518 ◽  
Author(s):  
R. F. H. Cash ◽  
U. Ziemann ◽  
K. Murray ◽  
G. W. Thickbroom

In human motor cortex transcranial magnetic stimulation (TMS) has been used to identify short-interval intracortical inhibition (SICI) corresponding to γ-aminobutyric acid type A (GABAA) effects and long-interval intracortical inhibition (LICI) and the cortical silent period (SP) corresponding to postsynaptic GABAB effects. Presynaptic GABAB effects, corresponding to disinhibition, can also be identified with TMS and have been shown to be acting during LICI by measuring SICI after a suprathreshold priming stimulus (PS). The duration of disinhibition is not certain and, guided by studies in experimental preparations, we hypothesized that it may be longer-lasting than postsynaptic inhibition, leading to a period of late cortical disinhibition and consequently a net increase in corticospinal excitability. We tested this first by measuring the motor-evoked potential (MEP) to a test stimulus (TS), delivered after a PS at interpulse intervals (IPIs) ≤300 ms that encompassed the period of PS-induced LICI and its aftermath. MEP amplitude was initially decreased, but then increased at IPIs of 190–210 ms, reaching 160 ± 17% of baseline 200 ms after PS ( P < 0.05). SP duration was 181 ± 5 ms. A second experiment established that the onset of the later period of increased excitability correlated with PS intensity ( r2 = 0.99) and with the duration of the SP ( r2 = 0.99). The third and main experiment demonstrated that SICI was significantly reduced in strength at all IPIs ≤220 ms after PS. We conclude that TMS-induced LICI is associated with a period of disinhibition that is at first masked by LICI, but that outlasts LICI and gives rise to a period during which disinhibition predominates and net excitability is raised. Identification of this late period of disinhibition in human motor cortex may provide an opportunity to explore or modulate the behavior of excitatory networks at a time when inhibitory effects are restrained.


2019 ◽  
Vol 22 (7) ◽  
pp. 435-444 ◽  
Author(s):  
Deniz Doruk Camsari ◽  
Charles P Lewis ◽  
Ayse Irem Sonmez ◽  
Aiswarya Laks Nandakumar ◽  
Marjorie A Gresbrink ◽  
...  

Abstract Background The goal of this study was to examine baseline transcranial magnetic stimulation measures of cortical inhibition and excitability in depressed patients and characterize their longitudinal posttreatment changes. Methods Fifteen adolescents (age 13–17 years) with moderate to severe major depressive disorder and 22 healthy controls (age 9–17) underwent single- and paired-pulse transcranial magnetic stimulation and clinical assessments. Transcranial magnetic stimulation measures included short-interval intracortical inhibition (2 and 4 milliseconds), long-interval intracortical inhibition (100, 150, and 200 milliseconds), cortical silent period, and intracortical facilitation (10, 15, and 20 milliseconds). Ten participants with major depressive disorder initiated antidepressant treatment or had dose adjustments. These participants were reassessed after treatment. Depression symptom severity was measured with the Children’s Depression Rating Scale, Revised. Robust regression modeling compared healthy and depressed adolescents at baseline. Relationships between changes in cortical inhibition and changes in depressive symptom severity were assessed in the depressed adolescents receiving antidepressant treatment. Results Our results revealed that at baseline, short-interval intracortical inhibition-2 was significantly reduced (Padj = .01) in depressed participants, suggesting impaired cortical inhibition compared with healthy controls. At follow-up, improvement in Children’s Depression Rating Scale, Revised scores correlated with improvement in short-interval intracortical inhibition-4 amplitude (greater inhibition) after antidepressant treatment (R2 = 0.63; P = .01). Conclusions These results suggest that cortical inhibition measures may have promise as biomarkers in adolescents treated for depression.


2019 ◽  
Author(s):  
Cécilia Neige ◽  
Dylan Rannaud Monany ◽  
Cathy M. Stinear ◽  
Winston D. Byblow ◽  
Charalambos Papaxanthis ◽  
...  

AbstractMotor imagery (MI) is the mental simulation of an action without any apparent muscular contraction. By means of transcranial magnetic stimulation, few studies revealed a decrease of short-interval intracortical inhibition (SICI) within the primary motor cortex. However, this decrease is ambiguous, as one would expect greater inhibition during MI to prevent overt motor output. The current study investigated the extent of SICI modulation during MI through a methodological and a conceptual reconsideration of i) the importance of parameters to assess SICI (Exp.1) and ii) the inhibitory process within the primary motor cortex as an inherent feature of MI (Exp.2). Participants performed two tasks: 1) rest and 2) imagery of isometric abduction of the right index finger. Using transcranial magnetic stimulation, motor evoked potentials were elicited in the right first dorsal interosseous muscle. An adaptive threshold-hunting paradigm was used, where the stimulus intensity required to maintain a fixed motor evoked potential amplitude was quantified. To test SICI, we conditioned the test stimulus with a conditioning stimulus (CS) of different intensities. Results revealed an Intensity by Task interaction showing that SICI decreased during MI as compared to rest only for the higher CS intensity (Exp.1). At the lowest CS intensities, a Task main effect revealed that SICI increased during MI (Exp.2). SICI modulation during MI depends critically on the CS intensity. By optimising CS intensity, we have shown that SICI circuits may increase during MI, revealing a potential mechanism to prevent the production of a movement while the motor system is activated.HighlightsExcitatory and inhibitory neural processes interact during motor imagery, as the motor regions are activated but no movement is produced.The current study investigated the extent of short interval intracortical inhibition modulation (SICI) during motor imagery.When using optimal settings, SICI increased during motor imagery, likely to prevent the production of an overt movement.


2020 ◽  
Author(s):  
Simranjit Sidhu ◽  
Benedikt Lauber

AbstractIn contrast to other rhythmic tasks such as running, the preferred movement rate in cycling does not minimize energy consumption. It is possible that neurophysiological mechanisms contribute to the choice of cadence, however this phenomenon is not well understood. Eleven participants cycled at a fixed workload of 125 W and different cadences including a freely chosen cadence (FCC, ∼72), and fixed cadences of 70, 80, 90 and 100 revolutions per minute (rpm) during which transcranial magnetic stimulation (TMS) was used to measure short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). There was significant increase in SICI at 70 (P = 0.004), 80 (P = 0.008) and 100 rpm (P = 0.041) compared to FCC. ICF was significantly reduced at 70 rpm compared to FCC (P = 0.04). Inhibition-excitation ratio (SICI divided by ICF) declined (P = 0.014) with an increase in cadence. The results demonstrate that SICI is attenuated during FCC compared to fixed cadences. The outcomes suggest that the attenuation of intracortical inhibition and augmentation of ICF may be a contributing factor for FCC.


Sign in / Sign up

Export Citation Format

Share Document