Estrogen attenuates the exercise pressor reflex in female cats

2003 ◽  
Vol 95 (4) ◽  
pp. 1418-1424 ◽  
Author(s):  
Petra M. Schmitt ◽  
M. P. Kaufman

In humans, the pressor and muscle sympathetic nerve responses to static exercise are less in women than in men. The difference has been attributed to the effect of estrogen on the exercise pressor reflex. Estrogen receptors are abundant in areas of the dorsal horn receiving input from group III and IV muscle afferents, which comprise the sensory limb of the exercise pressor reflex arc. These findings prompted us to investigate the effect of estrogen on the spinal pathway of the exercise pressor reflex arc. Previously, we found that the threshold concentration of 17β-estradiol needed to attenuate the exercise pressor reflex in male decerebrate cats was 10 μg/ml (Schmitt PM and Kaufman MP. J Appl Physiol 94: 1431-1436, 2003). The threshold concentration for female cats, however, is not known. Consequently, we applied 17β-estradiol to a well covering the L6-S1 spinal cord in decerebrate female cats. The exercise pressor reflex was evoked by electrical stimulation of the L7 or S1 ventral root, a maneuver that caused the hindlimb muscles to contract statically. We found that the pressor response to contraction averaged 38 ± 7 mmHg before the application of 17β-estradiol (0.01 μg/ml) to the spinal cord, whereas it averaged only 23 ± 4 mmHg 30 min after application ( P < 0.05). Recovery of the pressor response to contraction was not obtained for 2 h after application of 17β-estradiol. Application of 17β-estradiol in a dose of 0.001 μg/ml had no effect on the exercise pressor reflex ( n = 5). We conclude that the concentration of 17β-estradiol required to attenuate the exercise pressor reflex is 1,000 times more dilute in female cats than that needed to attenuate this reflex in male cats.

2003 ◽  
Vol 94 (4) ◽  
pp. 1431-1436 ◽  
Author(s):  
Petra M. Schmitt ◽  
Marc P. Kaufman

Previously, intravenous injection of 17β-estradiol in decerebrate male cats was found to attenuate central command but not the exercise pressor reflex. This latter finding was surprising because the dorsal horn, the spinal site receiving synaptic input from thin-fiber muscle afferents, is known to contain estrogen receptors. We were prompted, therefore, to reexamine this issue. Instead of injecting 17β-estradiol intravenously, we applied it topically to the L7 and S1 spinal cord of male decerebrate cats. We found that topical application (150–200 μl) of 17β-estradiol in concentrations of 0.01, 0.1, and 1 μg/ml had no effect on the exercise pressor reflex, whereas a concentration of 10 μg/ml attenuated the reflex. We conclude that, in male cats, estrogen can only attenuate the exercise pressor reflex in concentrations that exceed the physiological level.


2001 ◽  
Vol 280 (5) ◽  
pp. H2153-H2161 ◽  
Author(s):  
Shawn G. Hayes ◽  
Marc P. Kaufman

The exercise pressor reflex, which arises from the contraction-induced stimulation of group III and IV muscle afferents, is widely believed to be evoked by metabolic stimuli signaling a mismatch between blood/oxygen demand and supply in the working muscles. Nevertheless, mechanical stimuli may also play a role in evoking the exercise pressor reflex. To determine this role, we examined the effect of gadolinium, which blocks mechanosensitive channels, on the exercise pressor reflex in both decerebrate and α-chloralose-anesthetized cats. We found that gadolinium (10 mM; 1 ml) injected into the femoral artery significantly attenuated the reflex pressor responses to static contraction of the triceps surae muscles and to stretch of the calcaneal (Achilles) tendon. In contrast, gadolinium had no effect on the reflex pressor response to femoral arterial injection of capsaicin (5 μg). In addition, gadolinium significantly attenuated the responses of group III muscle afferents, many of which are mechanically sensitive, to both static contraction and to tendon stretch. Gadolinium, however, had no effect on the responses of group IV muscle afferents, many of which are metabolically sensitive, to either static contraction or to capsaicin injection. We conclude that mechanical stimuli arising in contracting skeletal muscles contribute to the elicitation of the exercise pressor reflex.


2006 ◽  
Vol 100 (3) ◽  
pp. 958-964 ◽  
Author(s):  
Petra M. Schmitt ◽  
Kishorchandra Gohil ◽  
Marc P. Kaufman

Previously, our laboratory showed that estrogen, topically applied to the spinal cord, attenuated the exercise pressor reflex in female cats (Schmitt PM and Kaufman MP. J Appl Physiol 95: 1418–1424, 2003; 98: 633–639, 2005). The attenuation was gender specific and was in part opioid dependent. Our finding that the μ- and δ-opioid antagonist naloxone was only able to partially restore estrogen’s attenuating effect on the pressor response to static contraction suggested that estrogen affected an additional pathway, involving the dorsal root ganglion (DRG). Estrogen has been described to stimulate transcription within 10 min of its application to the DRG, raising the possibility that rapid genomic effects on neurotransmitter production may have contributed to estrogen’s effect on the exercise pressor reflex. This prompted us to test the hypothesis that estrogen modulated the pressor response to static contraction by influencing gene expression of the neurotransmitters released by the thin-fiber muscle afferents that evoke the exercise pressor reflex. We confirmed in decerebrated female rats that topical application of estrogen (0.01 μg/ml) to the lumbosacral spinal cord attenuated the pressor response to static muscle contraction (from 10 ± 3 to 1 ± 1 mmHg; P < 0.05). DRG were then harvested postmortem, and changes in mRNA expression were analyzed. GeneChip analysis revealed that neither estrogen nor contraction alone changed the mRNA expression of substance P, the neurokinin-1 receptor, CGRP, NGF, the P2X3 receptor, GABAA and GABAB, the 5-HT3A and 5-HT3B receptor, N-methyl-d-aspartate and non- N-methyl-d-aspartate receptors, opioid receptors, and opioid-like receptor. Surprisingly, however, contraction stimulated the expression of neuropeptide Y in the DRG in the presence and absence of estrogen. We conclude that estrogen does not attenuate the exercise pressor reflex through a genomic effect in the DRG.


2005 ◽  
Vol 98 (2) ◽  
pp. 633-639 ◽  
Author(s):  
Petra M. Schmitt ◽  
Marc P. Kaufman

Using gonadally intact female cats, we showed previously that estrogen, applied topically to the spinal cord, attenuated the exercise pressor reflex. Although the mechanism by which estrogen exerted its attenuating effect is unknown, this steroid hormone has been shown to influence spinal opioid pathways, which in turn have been implicated in the regulation of the exercise pressor reflex. These findings prompted us to test the hypothesis that opioids mediate the attenuating effect of estrogen on the exercise pressor reflex in both gonadally intact female and ovariectomized cats. We therefore applied 200 μl of 17β-estradiol (0.01 μg/ml) with and without the addition of 1,000 μg naloxone, a μ- and δ-opioid antagonist, to a spinal well covering the L6–S1 spinal cord in decerebrated female cats that were either gonadally intact or ovariectomized. The exercise pressor reflex was evoked by electrical stimulation of the L7 or S1 ventral root, a maneuver that caused the hindlimb muscles to contract statically. We found that, in gonadally intact cats, the attenuating effect of estrogen was more pronounced than that in ovariectomized cats. We also found that, in gonadally intact female cats, naloxone partly reversed the attenuation of the pressor response to static contraction caused by spinal estrogen application. For example, in intact cats, the pressor response to contraction before estrogen application averaged 39 ± 4 mmHg ( n = 10), whereas the pressor response 60 min afterward averaged only 18 ± 4 mmHg ( P < 0.05). In contrast, the pressor response to contraction before estrogen and naloxone application averaged 33 ± 5 mmHg ( n = 11), whereas afterward it averaged 27 ± 6 mmHg ( P < 0.05). In ovariectomized cats, naloxone was less effective in reversing the attenuating effect of estrogen on the exercise pressor reflex.


2020 ◽  
Vol 319 (2) ◽  
pp. R223-R232
Author(s):  
Juan A. Estrada ◽  
Guillaume P. Ducrocq ◽  
Joyce S. Kim ◽  
Marc P. Kaufman

Purinergic 2X (P2X) receptors on the endings of group III and IV afferents play a role in evoking the exercise pressor reflex. Particular attention has been paid to P2X3 receptors because their blockade in the periphery attenuated this reflex. In contrast, nothing is known about the role played by P2X receptors in the spinal cord in evoking the exercise pressor reflex in rats. P2X7 receptors, in particular, may be especially important in this regard because they are found in abundance on spinal glial cells and may communicate with neurons to effect reflexes controlling cardiovascular function. Consequently, we investigated the role played by spinal P2X7 receptors in evoking the exercise pressor reflex in decerebrated rats. We found that intrathecal injection of the P2X7 antagonist brilliant blue G (BBG) attenuated the exercise pressor reflex (blood pressure index: 294 ± 112 mmHg·s before vs. 7 ± 32 mmHg·s after; P < 0.05). Likewise, intrathecal injection of minocycline, which inhibits microglial cell output, attenuated the reflex. In contrast, intrathecal injection of BBG did not attenuate the pressor response evoked by intracarotid injection of sodium cyanide, a maneuver that stimulated carotid chemoreceptors. Moreover, injections of BBG either into the arterial supply of the contracting hindlimb muscles or into the jugular vein did not attenuate the exercise pressor reflex. Our findings support the hypothesis that P2X7 receptors on microglial cells within the spinal cord play a role in evoking the exercise pressor reflex.


2015 ◽  
Vol 309 (9) ◽  
pp. H1479-H1489 ◽  
Author(s):  
Simranjit K. Sidhu ◽  
Joshua C. Weavil ◽  
Massimo Venturelli ◽  
Matthew J. Rossman ◽  
Benjamin S. Gmelch ◽  
...  

We investigated the influence of aging on the group III/IV muscle afferents in the exercise pressor reflex-mediated cardiovascular response to rhythmic exercise. Nine old (OLD; 68 ± 2 yr) and nine young (YNG; 24 ± 2 yr) males performed single-leg knee extensor exercise (15 W, 30 W, 80% max) under control conditions and with lumbar intrathecal fentanyl impairing feedback from group III/IV leg muscle afferents. Mean arterial pressure (MAP), cardiac output, leg blood flow (QL), systemic (SVC) and leg vascular conductance (LVC) were continuously determined. With no hemodynamic effect at rest, fentanyl blockade during exercise attenuated both cardiac output and QL ∼17% in YNG, while the decrease in cardiac output in OLD (∼5%) was significantly smaller with no impact on QL ( P = 0.8). Therefore, in the face of similar significant ∼7% reduction in MAP during exercise with fentanyl blockade in both groups, LVC significantly increased ∼11% in OLD, but decreased ∼8% in YNG. The opposing direction of change was reflected in SVC with a significant ∼5% increase in OLD and a ∼12% decrease in YNG. Thus while cardiac output seems to account for the majority of group III/IV-mediated MAP responses in YNG, the impact of neural feedback on the heart may decrease with age and alterations in SVC become more prominent in mediating the similar exercise pressor reflex in OLD. Interestingly, in terms of peripheral hemodynamics, while group III/IV-mediated feedback plays a clear role in increasing LVC during exercise in the YNG, these afferents seem to actually reduce LVC in OLD. These peripheral findings may help explain the limited exercise-induced peripheral vasodilation often associated with aging.


2002 ◽  
Vol 283 (3) ◽  
pp. H1012-H1018 ◽  
Author(s):  
Jianhua Li ◽  
Jere H. Mitchell

Static contraction of hindlimb skeletal muscle in cats induces a reflex pressor response. The superficial dorsal horn of the spinal cord is the major site of the first synapse of this reflex. In this study, static contraction of the triceps surae muscle was evoked by electrical stimulation of the tibial nerve for 2 min in anesthetized cats (stimulus parameters: two times motor threshold at 30 Hz, 0.025-ms duration). Ten stimulations were performed and 1-min rest was allowed between stimulations. Muscle contraction caused a maximal increase of 32 ± 5 mmHg in mean arterial pressure (MAP), which was obtained from the first three contractions. Activated neurons in the superficial dorsal horn were identified by c-Fos protein. Distinct c-Fos expression was present in the L6-S1 level of the superficial dorsal horn ipsilateral to the contracting leg (88 ± 14 labeled cells per section at L7), whereas only scattered c-Fos expression was observed in the contralateral superficial dorsal horn (9 ± 2 labeled cells per section, P < 0.05 compared with ipsilateral section). A few c-Fos-labeled cells were found in control animals (12 ± 5 labeled cells per section, P < 0.05 compared with stimulated cats). Furthermore, double-labeling methods demonstrated that c-Fos protein coexisted with nitric oxide (NO) synthase (NOS) positive staining in the superficial dorsal horn. Finally, an intrathecal injection of an inhibitor of NOS, N-nitro-l-arginine methyl ester (5 mM), resulted in fewer c-Fos-labeled cells (58 ± 12 labeled cells per section) and a reduced maximal MAP response (20 ± 3 mmHg, P < 0.05). These results suggest that the exercise pressor reflex induced by static contraction is mediated by activation of neurons in the superficial dorsal horn and that formation of NO in this region is involved in modulating the activated neurons and the pressor response to contraction.


1994 ◽  
Vol 267 (4) ◽  
pp. R909-R915 ◽  
Author(s):  
C. L. Stebbins ◽  
A. Ortiz-Acevedo

We tested the hypothesis that oxytocin (Oxt) acts in the lumbar spinal cord to attenuate reflex pressor (mean arterial pressure, MAP) and heart rate (HR) responses to static hindlimb contraction (i.e., the exercise pressor reflex). Thus we compared MAP and HR responses to electrically stimulated hindlimb static contraction in the anesthetized cat before and after intrathecal injection of Oxt (30 pmol, n = 3; 300 pmol, n = 6; or 3 nmol, n = 6). The 300-pmol dose was most effective; it attenuated the pressor response to static contraction by 39 +/- 10% but had no effect on HR. In three other cats, contraction-induced increases in MAP and HR were monitored before and after intrathecal injection of 300 pmol of Oxt + 300 nmol of the selective Oxt receptor antagonist [d(CH2)5(1),O-Me-Tyr2,Thr4,Tyr9,Orn8]vasotocin. Pretreatment with the antagonist eliminated the effect of Oxt on MAP. In an additional 10 cats, increases in these same variables in response to static contraction were compared before and after intrathecal injection of the Oxt antagonist (30 nmol, n = 3 or 300 nmol, n = 7) into the lumbar spinal cord (L1-L7). Whereas 30 nmol of the Oxt antagonist had no effect, the 300-nmol dose augmented the contraction-induced pressor and HR responses by 28 +/- 7 and 32 +/- 17%, respectively. These data imply that endogenous Oxt modulates the exercise pressor reflex by its action on Oxt receptors in the lumbar spinal cord that can attenuate sensory nerve transmission from skeletal muscle.


2003 ◽  
Vol 94 (4) ◽  
pp. 1437-1445 ◽  
Author(s):  
Ramy L. Hanna ◽  
Marc P. Kaufman

The exercise pressor reflex is believed to be evoked, in part, by multiple metabolic stimuli that are generated when blood supply to exercising muscles is inadequate to meet metabolic demand. Recently, ATP, which is a P2 receptor agonist, has been suggested to be one of the metabolic stimuli evoking this reflex. We therefore tested the hypothesis that blockade of P2 receptors within contracting skeletal muscle attenuated the exercise pressor reflex in decerebrate cats. We found that popliteal arterial injection of pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS; 10 mg/kg), a P2 receptor antagonist, attenuated the pressor response to static contraction of the triceps surae muscles. Specifically, the pressor response to contraction before PPADS averaged 36 ± 3 mmHg, whereas afterward it averaged 14 ± 3 mmHg ( P < 0.001; n = 19). In addition, PPADS attenuated the pressor response to postcontraction circulatory occlusion ( P < 0.01; n = 11). In contrast, popliteal arterial injection of CGS-15943 (250 μg/kg), a P1 receptor antagonist, had no effect on the pressor response to static contraction of the triceps surae muscles. In addition, popliteal arterial injection of PPADS but not CGS-15943 attenuated the pressor response to stretch of the calcaneal (Achilles) tendon. We conclude that P2 receptors on the endings of thin fiber muscle afferents play a role in evoking both the metabolic and mechanoreceptor components of the exercise pressor reflex.


2011 ◽  
Vol 301 (5) ◽  
pp. H2140-H2146 ◽  
Author(s):  
Anna K. Leal ◽  
Jennifer L. McCord ◽  
Hirotsugu Tsuchimochi ◽  
Marc P. Kaufman

Cyclooxygenase metabolites stimulate or sensitize group III and IV muscle afferents, which comprise the sensory arm of the exercise pressor reflex. The thromboxane (TP) receptor binds several of these metabolites, whose concentrations in the muscle interstitium are increased by exercise under freely perfused conditions and even more so under ischemic conditions, which occur in peripheral artery disease. We showed that the exercise pressor reflex is greater in rats with simulated peripheral artery disease than in rats with freely perfused limbs. These findings prompted us to test the hypothesis that the TP receptor contributes to the exaggerated exercise pressor reflex occurring in a rat model of peripheral artery disease. We compared the cardiovascular responses to static contraction and stretch before and after femoral arterial injections of daltroban (80 μg), a TP receptor antagonist. We performed these experiments in decerebrate rats whose femoral arteries were ligated 72 h before the experiment (a model of simulated peripheral artery disease) and in control rats whose hindlimbs were freely perfused. Daltroban reduced the pressor response to static contraction in both freely perfused ( n = 6; before: Δ12 ± 2 mmHg, after: Δ6 ± 2 mmHg, P = 0.024) and 72-h-ligated rats ( n = 10; before: Δ25 ± 3 mmHg, after: Δ7 ± 4 mmHg, P = 0.001). Likewise, daltroban reduced the pressor response to stretch in the freely perfused group ( n = 9; before: Δ30 ± 3 mmHg, after: Δ17 ± 3 mmHg, P < 0.0001) and in the ligated group ( n = 11; before: Δ37 ± 5 mmHg, after: Δ23 ± 3 mmHg, P = 0.016). Intravenous injections of daltroban had no effect on the pressor response to contraction. We conclude that the TP receptor contributes to the pressor responses evoked by contraction and stretch in both freely perfused rats and rats with simulated peripheral artery disease.


Sign in / Sign up

Export Citation Format

Share Document