scholarly journals The FGL2 prothrombinase contributes to the pathological process of experimental pulmonary hypertension

2019 ◽  
Vol 127 (6) ◽  
pp. 1677-1687
Author(s):  
Cheng Fan ◽  
Jue Wang ◽  
Chaoqin Mao ◽  
Wenzhu Li ◽  
Kun Liu ◽  
...  

In situ thrombus formation is one of the major pathological features of pulmonary hypertension (PH). The mechanism of in situ thrombosis has not been clearly identified. Fibrinogen-like protein 2 (FGL2) prothrombinase is an immune coagulant that can cleave prothrombin to thrombin, which then converts fibrinogen into fibrin. This mechanism triggers in situ thrombus formation directly, bypassing both the intrinsic and extrinsic coagulation pathways. FGL2 prothrombinase is mainly expressed in endothelial cells and mediates multiple pathological processes. This implies that it may also play a role in PH. In this study, we examined the expression of FGL2 in idiopathic pulmonary arterial hypertension (IPAH) patients, and in monocrotaline-induced rat and hypoxia-induced mouse PH models. Fgl2−/− mice were used to evaluate the development of PH and explore associated pathological changes. These included in situ thrombosis, vascular remodeling, and endothelial apoptosis. Following these analyses, we examined possible signaling pathways downstream of FGL2 in PH. We show FGL2 is upregulated in pulmonary vascular endothelium in human IPAH and in two animal PH models. Genetic knockout of Fgl2 limited the development of PH, indicated by decreased in situ thrombus formation, less vascular remodeling, and reduced endothelial dysfunction. In addition, loss of FGL2 downregulated PAR1 (proteinase-activated receptor 1) expression and decreased the overactivation and consumption of platelets in hypoxia-induced PH. These results indicate FGL2 participate in the development of PH and loss of FGL2 could attenuate PH by reducing in situ thrombosis and suppressing PAR1 signaling. Thus we provide evidence that suggests FGL2 prothrombinase presents a potential therapeutic target for clinical treatment of PH. NEW & NOTEWORTHY This is the first study to demonstrate that fibrinogen-like protein 2 (FGL2) participates in the pathological progression of pulmonary hypertension (PH) in human idiopathic pulmonary arterial hypertension, a monocrotaline rat PH model, and a hypoxia mouse PH model. Genetic knockout of Fgl2 significantly limited the development of PH indicated by reduced in situ thrombosis, vascular remodeling, and endothelial dysfunction, and suppressed PAR1 (proteinase-activated receptor 1) signaling and overactivation of platelets on PH. These results suggest FGL2 presents a potential therapeutic target for clinical treatment of PH.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1859.1-1860
Author(s):  
Y. Zhang ◽  
N. Zhang ◽  
Y. Zhu ◽  
Q. Wang ◽  
L. Zhou

Background:Pulmonary arterial hypertension (PAH) is a fatal complication of connective tissue diseases (CTDs). Chest CT has been increasingly used in the evaluation of patients with suspected PH noninvasively but there is a paucity of studies.Objectives:Our study was aimed to investigate the cross-sectional area (CSA) of small pulmonary vessels on chest CT for the diagnosis and prognosis of CTD-PAH.Methods:This retrospective study analyzed the data of thirty-four patients with CTD-PAH who were diagnosed by right heart catheterization (RHC) and underwent chest CT between March 2011 and October 2019. We measured the percentage of total CSA of vessels<5 mm2and 5-10 mm2as a percentage of total lung area (%CSA<5and %CSA5-10) on Chest CT. Furthermore, the association of %CSA with mean pulmonary artery pressure (mPAP) was also investigated. Besides, these patients were followed up until October 2019, and Kaplan-Meier survival curves were generated for the evaluation of prognosis.Results:Patients with CTD-PAH had significantly higher %CSA5-10than CTD-nPAH (p=0.001), %CSA5-10in CTD-S-PAH and IPAH was significantly higher than CTD-LM-PAH and COPD-PH (p<0.01). There was a positive correlation between %CSA5-10and mPAP in CTD-PAH (r=0.447, p=0.008). Considering %CSA5-10above 0.38 as a threshold level, the sensitivity and specificity were found to be 0.824 and 0.706, respectively. Patients with %CSA5-10≥0.38 had a lower survival rate than those with %CSA5-10<0.38 (p=0.049).Conclusion:Quantitative parameter, %CSA5-10on Chest CT might serve a crucial differential diagnostic tool for different types of PH. %CSA5-10≥0.38 is a prognostic indicator for evaluation of CTD-PAH.References:[1]Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. Rev Esp Cardiol (Engl Ed). 2016;69(2):177.[2]Siddiqui I, Rajagopal S, Brucker A, et al. Clinical and Echocardiographic Predictors of Outcomes in Patients With Pulmonary Hypertension. Am J Cardiol. 2018;122(5):872-878.[3]Coste F, Dournes G, Dromer C, et al. CT evaluation of small pulmonary vessels area in patients with COPD with severe pulmonary hypertension. Thorax. 2016;71(9):830-837.[4]Freed BH, Collins JD, Francois CJ, et al. MR and CT Imaging for the Evaluation of Pulmonary Hypertension. JACC Cardiovasc Imaging. 2016;9(6):715-732.[5]Pietra GG, Capron F, Stewart S, et al. Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol. 2004;43(12 Suppl S):25S-32S.[6]Zanatta E, Polito P, Famoso G, et al. Pulmonary arterial hypertension in connective tissue disorders: Pathophysiology and treatment. Exp Biol Med (Maywood). 2019;244(2):120-131.[7]Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115(1):165-175.[8]Thenappan T, Ormiston ML, Ryan JJ, Archer SL. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ. 2018;360:j5492.[9]Thompson AAR, Lawrie A. Targeting Vascular Remodeling to Treat Pulmonary Arterial Hypertension. Trends Mol Med. 2017;23(1):31-45.[10]Shimoda LA, Laurie SS. Vascular remodeling in pulmonary hypertension. J Mol Med (Berl). 2013;91(3):297-309.[11]Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest. 2012;122(12):4306-4313.[12]Seeger W, Adir Y, Barbera JA, et al. Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol. 2013;62(25 Suppl):D109-116.Acknowledgments:Thanks to all patients involved in this retrospective study. Thanks go to every participant who participated in this study for their enduring efforts in working with participants to complete the study. Thanks to Liangmin Wei for helping us with statistics analysis.Disclosure of Interests:None declared


2020 ◽  
Vol 19 (4) ◽  
pp. 240-243
Author(s):  
Adam Maxwell ◽  
◽  
Thomas Holman ◽  
Timea Novak ◽  
◽  
...  

A 31-year old woman presented to the acute medical unit 9 days post-partum with shortness of breath and peripheral oedema. Initially suspected to have either a pulmonary embolism or post-partum cardiomyopathy, she proceeded to have imaging including a CT Pulmonary angiogram and echocardiogram, which were suggestive of pulmonary hypertension and severe right heart failure. Her history and other investigations did not reveal any obvious cause for this. She was transferred to a specialist centre where she was diagnosed with Idiopathic Pulmonary Arterial Hypertension (IPAH), previously known as primary pulmonary hypertension. Shortness of breath during pregnancy and in the postpartum period is a relatively common acute medical presentation. Whilst IPAH is a rare diagnosis, it carries a high mortality rate, particularly in pregnancy, and requires prompt specialist investigation, diagnosis and management.


2019 ◽  
Vol 9 (4) ◽  
pp. 204589401985753
Author(s):  
Lina Caicedo ◽  
Rachel Hopper ◽  
Humberto Garcia Aguilar ◽  
Dunbar Ivy ◽  
Dora Haag ◽  
...  

The aim of this study was to determine practice patterns and inter-institutional variability in how acute vasoreactivity testing (AVT) is performed and interpreted in pediatrics throughout the world. A survey was offered to physicians affiliated with the Pediatric & Congenital Heart Disease Taskforce of the Pulmonary Vascular Research Institute (PVRI), the Pediatric Pulmonary Hypertension Network (PPHNET), or the Spanish Registry for Pediatric Pulmonary Hypertension (REHIPED), from February to December 2016. The survey requested data about the site-specific protocol for AVT and subsequent management of pediatric patients with idiopathic pulmonary arterial hypertension (IPAH) or heritable PAH (HPAH). Twenty-eight centers from 13 countries answered the survey. AVT is performed in most centers using inhaled nitric oxide (iNO). Sitbon criteria was used in 39% of the centers, Barst criteria in 43%, and other criteria in 18%. First-line therapy for positive AVT responders in functional class (FC) I/II was calcium channel blocker (CCB) in 89%, but only in 68% as monotherapy. Most centers (71%) re-evaluated AVT-positive patients hemodynamics after 6–12 months; 29% of centers re-evaluated based only on clinical criteria. Most centers (64%) considered a good response as remaining in FC I or II, with near normalization of pulmonary arterial pressure and pulmonary vascular resistance, but a stable FC I/II alone was sufficient criteria in 25% of sites. Protocols and diagnostic criteria for AVT, and therapeutic approaches during follow-up, were highly variable across the world. Reported clinical practice is not fully congruent with current guidelines, suggesting the need for additional studies that better define the prognostic value of AVT for pediatric IPAH patients.


2010 ◽  
Vol 298 (4) ◽  
pp. H1235-H1248 ◽  
Author(s):  
Revathi Rajkumar ◽  
Kazuhisa Konishi ◽  
Thomas J. Richards ◽  
David C. Ishizawar ◽  
Andrew C. Wiechert ◽  
...  

Idiopathic pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by pulmonary arteriolar remodeling. This investigation aimed to identify genes involved specifically in the pathogenesis of PAH and not other forms of pulmonary hypertension (PH). Using genomewide microarray analysis, we generated the largest data set to date of RNA expression profiles from lung tissue specimens from 1) 18 PAH subjects and 2) 8 subjects with PH secondary to idiopathic pulmonary fibrosis (IPF) and 3) 13 normal subjects. A molecular signature of 4,734 genes discriminated among these three cohorts. We identified significant novel biological changes that were likely to contribute to the pathogenesis of PAH, including regulation of actin-based motility, protein ubiquitination, and cAMP, transforming growth factor-β, MAPK, estrogen receptor, nitric oxide, and PDGF signaling. Bone morphogenic protein receptor type II expression was downregulated, even in subjects without a mutation in this gene. Women with PAH had higher expression levels of estrogen receptor 1 than normal women. Real-time quantitative PCR confirmed differential expression of the following genes in PAH relative to both normal controls and PH secondary to IPF: a disintegrin-like and metalloprotease with thrombospondin type 1 motif 9, cell adhesion molecule with homology to L1CAM, cytochrome b558and β-polypeptide, coagulation factor II receptor-like 3, A-myb myeloblastosis viral oncogene homolog 1, nuclear receptor coactivator 2, purinergic receptor P2Y, platelet factor 4, phospholamban, and tropomodulin 3. This study shows that PAH and PH secondary to IPF are characterized by distinct gene expression signatures, implying distinct pathophysiological mechanisms.


2019 ◽  
Vol 32 (11) ◽  
pp. 1109-1117
Author(s):  
Jun-Han Zhao ◽  
Yang-Yang He ◽  
Shan-Shan Guo ◽  
Yi Yan ◽  
Zhe Wang ◽  
...  

Abstract BACKGROUND Pulmonary arterial hypertension (PAH) is a severe progressive disease with systemic metabolic dysregulation. Monocrotaline (MCT)-induced and hypoxia-induced pulmonary hypertension (PH) rodent models are the most widely used preclinical models, however, whether or not these preclinical models recapitulate metabolomic profiles of PAH patients remain unclear. METHODS In this study, a targeted metabolomics panel of 126 small molecule metabolites was conducted. We applied it to the plasma of the 2 preclinical rodent models of PH and 30 idiopathic pulmonary arterial hypertension (IPAH) patients as well as 30 healthy controls to comparatively assess the metabolomic profiles of PAH patients and rodent models. RESULTS Significantly different metabolomics profiling and pathways were shown among the 2 classical rodent models and IPAH patients. Pathway analysis demonstrated that methionine metabolism and urea cycle metabolism were the most significant pathway involved in the pathogenesis of hypoxia-induced PH model and MCT-induced model, respectively, and both of them were also observed in the dysregulated pathways in IPAH patients. CONCLUSIONS These 2 models may develop PAH through different metabolomic pathways and each of the 2 classical PH model resembles IPAH patients in certain aspects.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuhua Wang ◽  
Ram Naresh Pandey ◽  
Allen J. York ◽  
Jaya Mallela ◽  
William C. Nichols ◽  
...  

Abstract In pulmonary hypertension vascular remodeling leads to narrowing of distal pulmonary arterioles and increased pulmonary vascular resistance. Vascular remodeling is promoted by the survival and proliferation of pulmonary arterial vascular cells in a DNA-damaging, hostile microenvironment. Here we report that levels of Eyes Absent 3 (EYA3) are elevated in pulmonary arterial smooth muscle cells from patients with pulmonary arterial hypertension and that EYA3 tyrosine phosphatase activity promotes the survival of these cells under DNA-damaging conditions. Transgenic mice harboring an inactivating mutation in the EYA3 tyrosine phosphatase domain are significantly protected from vascular remodeling. Pharmacological inhibition of the EYA3 tyrosine phosphatase activity substantially reverses vascular remodeling in a rat model of angio-obliterative pulmonary hypertension. Together these observations establish EYA3 as a disease-modifying target whose function in the pathophysiology of pulmonary arterial hypertension can be targeted by available inhibitors.


Sign in / Sign up

Export Citation Format

Share Document