protein ubiquitination
Recently Published Documents


TOTAL DOCUMENTS

493
(FIVE YEARS 197)

H-INDEX

53
(FIVE YEARS 7)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261723
Author(s):  
Jamie-Lee M. Thompson ◽  
Daniel W. D. West ◽  
Thomas M. Doering ◽  
Boris P. Budiono ◽  
Sarah J. Lessard ◽  
...  

Skeletal muscle atrophy is a physiological response to disuse, aging, and disease. We compared changes in muscle mass and the transcriptome profile after short-term immobilization in a divergent model of high and low responders to endurance training to identify biological processes associated with the early atrophy response. Female rats selectively bred for high response to endurance training (HRT) and low response to endurance training (LRT; n = 6/group; generation 19) underwent 3 day hindlimb cast immobilization to compare atrophy of plantaris and soleus muscles with line-matched controls (n = 6/group). RNA sequencing was utilized to identify Gene Ontology Biological Processes with differential gene set enrichment. Aerobic training performed prior to the intervention showed HRT improved running distance (+60.6 ± 29.6%), while LRT were unchanged (-0.3 ± 13.3%). Soleus atrophy was greater in LRT vs. HRT (-9.0 ±8.8 vs. 6.2 ±8.2%; P<0.05) and there was a similar trend in plantaris (-16.4 ±5.6% vs. -8.5 ±7.4%; P = 0.064). A total of 140 and 118 biological processes were differentially enriched in plantaris and soleus muscles, respectively. Soleus muscle exhibited divergent LRT and HRT responses in processes including autophagy and immune response. In plantaris, processes associated with protein ubiquitination, as well as the atrogenes (Trim63 and Fbxo32), were more positively enriched in LRT. Overall, LRT demonstrate exacerbated atrophy compared to HRT, associated with differential gene enrichments of biological processes. This indicates that genetic factors that result in divergent adaptations to endurance exercise, may also regulate biological processes associated with short-term muscle unloading.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 234
Author(s):  
Veronika Kinterová ◽  
Jiří Kaňka ◽  
Alexandra Bartková ◽  
Tereza Toralová

SCF-dependent proteolysis was first discovered via genetic screening of budding yeast almost 25 years ago. In recent years, more and more functions of SCF (Skp1-Cullin 1-F-box) ligases have been described, and we can expect the number of studies on this topic to increase. SCF ligases, which are E3 ubiquitin multi-protein enzymes, catalyse protein ubiquitination and thus allow protein degradation mediated by the 26S proteasome. They play a crucial role in the degradation of cell cycle regulators, regulation of the DNA repair and centrosome cycle and play an important role in several diseases. SCF ligases seem to be needed during all phases of development, from oocyte formation through fertilization, activation of the embryonic genome to embryo implantation. In this review, we summarize known data on SCF ligase-mediated degradation during oogenesis and embryogenesis. In particular, SCFβTrCP and SCFSEL-10/FBXW7 are among the most important and best researched ligases during early development. SCFβTrCP is crucial for the oogenesis of Xenopus and mouse and also in Xenopus and Drosophila embryogenesis. SCFSEL-10/FBXW7 participates in the degradation of several RNA-binding proteins and thereby affects the regulation of gene expression during the meiosis of C. elegans. Nevertheless, a large number of SCF ligases that are primarily involved in embryogenesis remain to be elucidated.


Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 68
Author(s):  
Tingwei Guo ◽  
Feng Kong ◽  
Carter Burton ◽  
Steven Scaglione ◽  
Blake Beagles ◽  
...  

Plants use diverse strategies to defend themselves from biotic stresses in nature, which include the activation of defense gene expression and a variety of signal transduction pathways. Previous studies have shown that protein ubiquitination plays a critical role in plant defense responses, however the details of its function remain unclear. Our previous work has shown that increasing expression levels of ATL9, an E3 ubiquitin ligase in Arabidopsis thaliana, increased resistance to infection by the fungal pathogen, Golovinomyces cichoracearum. In this study, we demonstrate that the defense-related proteins PDF1.2, PCC1 and FBS1 directly interact with ATL9 and are targeted for degradation to the proteasome by ATL9. The expression levels of PDF1.2, PCC1 and FBS1 are decreased in T-DNA insertional mutants of atl9 and T-DNA insertional mutants of pdf1.2, pcc1 and fbs1 are more susceptible to fungal infection. In addition, callose is more heavily deposited at infection sites in the mutants of atl9, fbs1, pcc1 and pdf1.2. Overexpression of ATL9 and of mutants in fbs1, pcc1 and pdf1.2 showed increased levels of cell death during infection. Together these results indicate that ubiquitination, cell death and callose deposition may work together to enhance defense responses to fungal pathogens.


2022 ◽  
Vol 23 (1) ◽  
pp. 514
Author(s):  
Sang-Soo Park ◽  
Kwang-Hyun Baek

Acute myeloid leukemia (AML), the most common form of an acute leukemia, is a malignant disorder of stem cell precursors of the myeloid lineage. Ubiquitination is one of the post-translational modifications (PTMs), and the ubiquitin-like proteins (Ubls; SUMO, NEDD8, and ISG15) play a critical role in various cellular processes, including autophagy, cell-cycle control, DNA repair, signal transduction, and transcription. Also, the importance of Ubls in AML is increasing, with the growing research defining the effect of Ubls in AML. Numerous studies have actively reported that AML-related mutated proteins are linked to Ub and Ubls. The current review discusses the roles of proteins associated with protein ubiquitination, modifications by Ubls in AML, and substrates that can be applied for therapeutic targets in AML.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hong Zhu ◽  
Yanfeng Zhang ◽  
Chengliang Zhang ◽  
Zhongshang Xie

Background: Pathological tissue remodeling such as fibrosis is developed in various cardiac diseases. As one of cardiac activated-myofibroblast protein markers, CKAP4 may be involved in this process and the mechanisms have not been explored.Methods: We assumed that CKAP4 held a role in the regulation of cardiac fibrotic remodeling as an RNA-binding protein. Using improved RNA immunoprecipitation and sequencing (iRIP-seq), we sought to analyze the RNAs bound by CKAP4 in normal atrial muscle (IP1 group) and remodeling fibrotic atrial muscle (IP2 group) from patients with cardiac valvular disease. Quantitative PCR and Western blotting were applied to identify CKAP4 mRNA and protein expression levels in human right atrium samples.Results: iRIP-seq was successfully performed, CKAP4-bound RNAs were characterized. By statistically analyzing the distribution of binding peaks in various regions on the reference human genome, we found that the reads of IP samples were mainly distributed in the intergenic and intron regions implying that CKAP4 is more inclined to combine non-coding RNAs. There were 913 overlapping binding peaks between the IP1 and IP2 groups. The top five binding motifs were obtained by HOMER, in which GGGAU was the binding sequence that appeared simultaneously in both IP groups. Binding peak-related gene cluster enrichment analysis demonstrated these genes were mainly involved in biological processes such as signal transduction, protein phosphorylation, axonal guidance, and cell connection. The signal pathways ranking most varied in the IP2 group compared to the IP1 group were relating to mitotic cell cycle, protein ubiquitination and nerve growth factor receptors. More impressively, peak analysis revealed the lncRNA-binding features of CKAP4 in both IP groups. Furthermore, qPCR verified CKAP4 differentially bound lncRNAs including LINC00504, FLJ22447, RP11-326N17.2, and HELLPAR in remodeling myocardial tissues when compared with normal myocardial tissues. Finally, the expression of CKAP4 is down-regulated in human remodeling fibrotic atrium.Conclusions: We reveal certain RNA-binding features of CKAP4 suggesting a relevant role as an unconventional RNA-binding protein in cardiac remodeling process. Deeper structural and functional analysis will be helpful to enrich the regulatory network of cardiac remodeling and to identify potential therapeutic targets.


2021 ◽  
Author(s):  
Nathalie Berger ◽  
Vincent Demolombe ◽  
Sonia Hem ◽  
Valérie Rofidal ◽  
Laura Steinmann ◽  
...  

Osmotic stress can be detrimental to plants, whose survival relies heavily on proteomic plasticity. Protein ubiquitination is a central post-translational modification in osmotic mediated stress. Plants use the ubiquitin (Ub) proteasome system to modulate protein content, and a role for Ub in mediating endocytosis and trafficking plant plasma membrane proteins has recently emerged. In this study, we used the K-ε-GG antibody enrichment method integrated with high-resolution mass spectrometry to compile a list of 719 ubiquitinated lysine (K-Ub) residues from 450 Arabidopsis root membrane proteins (58% of which are transmembrane proteins), thereby adding to the database of ubiquitinated substrates in plants. Although no Ub motifs could be identified, the presence of acidic residues close to K-Ub was revealed. Our ubiquitinome analysis pointed to a broad role of ubiquitination in the internalization and sorting of cargo proteins. Moreover, the simultaneous proteome and ubiquitinome quantification showed that ubiquitination is mostly not involved in membrane protein degradation in response to short osmotic treatment, but putatively in protein internalization as described for the aquaporin PIP2;1. Our in silico analysis of ubiquitinated proteins shows that two E2 Ub ligases, UBC32 and UBC34, putatively target membrane proteins under osmotic stress. Finally, we revealed a positive role for UBC32 and UBC34 in primary root growth under osmotic stress.


2021 ◽  
Author(s):  
Clara WT Koh ◽  
Justin SG Ooi ◽  
Gabrielle LC Joly ◽  
Kuan Rong Chan

Abstract Background Opening and processing gene expression data files in Excel runs into the inadvertent risk of converting gene names to dates. A plausible solution is to update these genes and dates to the new approved gene names as recommended by the HUGO Gene Nomenclature Committee (HGNC). Results We found that molecular pathways related to cell division, exocytosis, cilium assembly, protein ubiquitination and nitric oxide biosynthesis are most affected by this Excel auto-conversion. To circumvent this issue, we developed a web tool, Gene Updater, with Streamlit that can convert old gene names and dates back into the new gene names recommended by HGNC. The running instance of the web tool is accessible at: https://share.streamlit.io/kuanrongchan/date-to-gene-converter/main/date_gene_tool.py Conclusions Gene Updater can convert old gene names and dates back into the updated gene names, which are more resilient to Excel auto-conversion. We envision this tool to facilitate the sharing of gene expression datasets across multiple analytics platforms.


2021 ◽  
Author(s):  
Lu Zhu ◽  
Qing Zhang ◽  
Ciro Cordeiro ◽  
Sudeep Banjade ◽  
Richa Sardana ◽  
...  

Nedd4/Rsp5 family E3 ligases mediate numerous cellular processes, many of which require the E3 ligase to interact with PY-motif containing adaptor proteins. Several Arrestin-Related Trafficking adaptors(ARTs) of Rsp5 were self-ubiquitinated for activation, but the regulation mechanism remains elusive. Remarkably, we demonstrate that Art1, Art4, and Art5 undergo K63-linked di-ubiquitination by Rsp5. This modification enhances the PM recruitment of Rsp5 by Art1 or Art5 upon substrate induction, required for cargo protein ubiquitination. In agreement with these observations, we find that di-ubiquitin strengthens the interaction between the Pombe orthologs of Rsp5 and Art1, Pub1 and Any1. Further, we discover that the HECT domain exosite protects the K63-linked di-ubiquitin on the adaptors from cleavage by the deubiquitination enzyme Ubp2. Strikingly, loss of this protection results in the loss of K63-linked di-ubiquitin from the adaptors and diverts the adaptors for K48-linked poly-ubiquitination and proteasome-mediated degradation. Together, our study uncovers a novel ubiquitination modification implemented by Rsp5 adaptor proteins, underscoring the regulatory mechanism of how adaptor proteins control the recruitment and activity of Rsp5 for the turnover of membrane proteins.  


Author(s):  
Ravi Chauhan ◽  
Ajaz A. Bhat ◽  
Tariq Masoodi ◽  
Puneet Bagga ◽  
Ravinder Reddy ◽  
...  

AbstractProtein ubiquitination is one of the most crucial posttranslational modifications responsible for regulating the stability and activity of proteins involved in homeostatic cellular function. Inconsistencies in the ubiquitination process may lead to tumorigenesis. Ubiquitin-specific peptidases are attractive therapeutic targets in different cancers and are being evaluated for clinical development. Ubiquitin-specific peptidase 37 (USP37) is one of the least studied members of the USP family. USP37 controls numerous aspects of oncogenesis, including stabilizing many different oncoproteins. Recent work highlights the role of USP37 in stimulating the epithelial-mesenchymal transition and metastasis in lung and breast cancer by stabilizing SNAI1 and stimulating the sonic hedgehog pathway, respectively. Several aspects of USP37 biology in cancer cells are yet unclear and are an active area of research. This review emphasizes the importance of USP37 in cancer and how identifying its molecular targets and signalling networks in various cancer types can help advance cancer therapeutics.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2418
Author(s):  
Ling Cao ◽  
Sheng Wang ◽  
Lihua Zhao ◽  
Yuan Qin ◽  
Hong Wang ◽  
...  

Protein ubiquitination is important for the regulation of meiosis in eukaryotes, including plants. However, little is known about the involvement of E2 ubiquitin-conjugating enzymes in plant meiosis. Arabidopsis UBC22 is a unique E2 enzyme, able to catalyze the formation of ubiquitin dimers through lysine 11 (K11). Previous work has shown that ubc22 mutants are defective in megasporogenesis, with most ovules having no or abnormally functioning megaspores; furthermore, some mutant plants show distinct phenotypes in vegetative growth. In this study, we showed that chromosome segregation and callose deposition were abnormal in mutant female meiosis while male meiosis was not affected. The meiotic recombinase DMC1, required for homologous chromosome recombination, showed a dispersed distribution in mutant female meiocytes compared to the presence of strong foci in WT female meiocytes. Based on an analysis of F1 plants produced from crosses using a mutant as the female parent, about 24% of female mutant gametes had an abnormal content of DNA, resulting in frequent aneuploids among the mutant plants. These results show that UBC22 is critical for normal chromosome segregation in female meiosis but not for male meiosis, and they provide important leads for studying the role of UBC22 and K11-linked ubiquitination.


Sign in / Sign up

Export Citation Format

Share Document