Accessory muscle activity contributes to the variation in time to task failure for different arm postures and loads

2007 ◽  
Vol 102 (3) ◽  
pp. 1000-1006 ◽  
Author(s):  
Thorsten Rudroff ◽  
Benjamin K. Barry ◽  
Amy L. Stone ◽  
Carolyn J. Barry ◽  
Roger M. Enoka

Time to failure and electromyogram activity were measured during two types of sustained submaximal contractions with the elbow flexors that required each subject to exert the same net muscle torque with the forearm in two different postures. Twenty men performed the tasks, either by maintaining a constant force while pushing against a force transducer (force task), or by supporting an equivalent load while maintaining a constant elbow angle (position task). The time to failure for the position task with the elbow flexed at 1.57 rad and the forearm horizontal was less than that for the force task (5.2 ± 2.6 and 8.8 ± 3.6 min, P = 0.003), whereas it was similar when the forearm was vertical (7.9 ± 4.1 and 7.8 ± 4.5 min, P = 0.995). The activity of the rotator cuff muscles was greater during the position tasks (25.1 ± 10.1% maximal voluntary contraction) compared with the force tasks (15.2 ± 5.4% maximal voluntary contraction, P < 0.001) in both forearm postures. However, the rates of increase in electromyogram of the accessory muscles and mean arterial pressure were greater for the position task only when the forearm was horizontal ( P < 0.05), whereas it was similar for the elbow flexors. These findings indicate that forearm posture influences the difference in the time to failure for the two fatiguing contractions. When there was a difference between the two tasks, the task with the briefer time to failure involved greater rates of increase in accessory muscle activity and mean arterial pressure.

2008 ◽  
Vol 105 (2) ◽  
pp. 463-472 ◽  
Author(s):  
Sandra K. Hunter ◽  
Tejin Yoon ◽  
Joseph Farinella ◽  
Erin E. Griffith ◽  
Alexander V. Ng

The purpose was to compare the time to failure and muscle activation patterns for a sustained isometric submaximal contraction with the dorsiflexor muscles when the foot was restrained to a force transducer (force task) compared with supporting an equivalent inertial load and unrestrained (position task). Fifteen men and women (mean ± SD; 21.1 ± 1.4 yr) performed the force and position tasks at 20% maximal voluntary contraction force until task failure. Maximal voluntary contraction force performed before the force and position tasks was similar (333 ± 71 vs. 334 ± 65 N), but the time to task failure was briefer for the position task (10.0 ± 6.2 vs. 21.3 ± 17.8 min, P < 0.05). The rate of increase in agonist root-mean-square electromyogram (EMG), EMG bursting activity, rating of perceived exertion, fluctuations in motor output, mean arterial pressure, and heart rate during the fatiguing contraction was greater for the position task. EMG activity of the vastus lateralis (lower leg stabilizer) and medial gastrocnemius (antagonist) increased more rapidly during the position task, but coactivation ratios (agonist vs. antagonist) were similar during the two tasks. Thus the difference in time to failure for the two tasks with the dorsiflexor muscles involved a greater level of neural activity and rate of motor unit recruitment during the position task, but did not involve a difference in coactivation. These findings have implications for rehabilitation and ergonomics in minimizing fatigue during prolonged activation of the dorsiflexor muscles.


2002 ◽  
Vol 88 (6) ◽  
pp. 3087-3096 ◽  
Author(s):  
Sandra K. Hunter ◽  
Daphne L. Ryan ◽  
Justus D. Ortega ◽  
Roger M. Enoka

Endurance time, muscle activation, and mean arterial pressure were measured during two types of submaximal fatiguing contractions that required each subject to exert the same net muscle torque in the two tasks. Sixteen men and women performed isometric contractions at 15% of the maximum voluntary contraction (MVC) force with the elbow flexor muscles, either by maintaining a constant force while pushing against a force transducer (force task) or by supporting an equivalent inertial load while maintaining a constant elbow angle (position task). The endurance time for the force task (1402 ± 728 s) was twice as long as that for the position task (702 ± 582 s, P < 0.05), despite a similar reduction in the load torque at exhaustion for each contraction. The rate of increase in average electromyographic activity (EMG, % peak MVC value) for the elbow flexor muscles was similar for the two tasks. However, the average EMG was greater at exhaustion for the force task (22.4 ± 1.2%) compared with the position task (14.9 ± 1.0%, P < 0.05). In contrast, the rates of increase in the mean arterial pressure, the rating of perceived exertion, anterior deltoid EMG, and fluctuations in motor output (force or acceleration) were greater for the position task compared with the force task ( P < 0.05). Furthermore, the rate of bursts in EMG activity, which corresponded to the transient recruitment of motor units, was greater for the brachialis muscle during the position task. These results indicate that the briefer endurance time for the position task was associated with greater levels of excitatory and inhibitory input to the motor neurons compared with the force task.


1993 ◽  
Vol 75 (1) ◽  
pp. 273-278 ◽  
Author(s):  
K. P. Davy ◽  
W. G. Herbert ◽  
J. H. Williams

The purpose of this study was to test the hypothesis that prostaglandins participate in metaboreceptor stimulation of the pressor response to sustained isometric handgrip contraction in humans. To accomplish this, mean arterial pressure, heart rate (n = 10), and plasma norepinephrine levels (n = 8) were measured in healthy male subjects during sustained isometric handgrip at 40% of maximal voluntary contraction force to exhaustion and during a period of postcontraction muscle ischemia. The subjects were given a double-blind and counterbalanced administration of placebo or a single 100-mg dose of indomethacin. A period of 1 wk was allowed for systemic clearance of the drug. Mean arterial pressure increased 25 +/- 5 vs. 22 +/- 4 mmHg during the final minute of isometric handgrip contraction and 26 +/- 2 vs. 21 +/- 5 during the last minute of postcontraction muscle ischemia in the placebo vs. the indomethacin trial (P > 0.05), respectively. Heart rate was increased 21 +/- 4 vs. 17 +/- 3 beats/min during the final minute of isometric handgrip contraction in the placebo vs. the indomethacin trial (P > 0.05), respectively, and returned to control values during postcontraction muscle ischemia. Plasma norepinephrine levels increased 343 +/- 89 vs. 289 +/- 89 pg/ml after isometric handgrip contraction and 675 +/- 132 vs. 632 +/- 132 pg/ml after postcontraction muscle ischemia (P > 0.05) in the placebo vs. the indomethacin trial, respectively. These results suggest that prostaglandin inhibition does not significantly modulate muscle contraction-induced stimulation of mean arterial pressure, heart rate, or plasma norepinephrine levels.


2011 ◽  
Vol 110 (1) ◽  
pp. 125-136 ◽  
Author(s):  
Thorsten Rudroff ◽  
Jamie N. Justice ◽  
Matthew R. Holmes ◽  
Stephen D. Matthews ◽  
Roger M. Enoka

The primary purpose of this study was to determine the influence of load compliance on time to failure during sustained isometric contractions performed with the elbow flexor muscles at four submaximal target forces. Subjects pulled against a rigid restraint during the force task and maintained a constant elbow angle, while supporting an equivalent inertial load during the position task. Each task was sustained for as long as possible. Twenty-one healthy adults (23 ± 6 yr; 11 men) participated in the study. The maximal voluntary contraction (MVC) force was similar ( P = 0.95) before the subjects performed the force and position tasks at each of the four target forces: 20, 30, 45, and 60% of MVC force. The time to task failure was longer for the force tasks (576 ± 80 and 325 ± 70 s) than for the position tasks (299 ± 77 and 168 ± 35 s) at target forces of 20 and 30% ( P < 0.001), but was similar for the force tasks (178 ± 35 and 86 ± 14 s) and the position tasks (132 ± 29 and 87 ± 14 s) at target forces of 45 and 60% ( P > 0.19). The briefer times to failure for the position task at the lower forces were accompanied by greater rates of increase in elbow flexor muscle activity, mean arterial pressure, heart rate, and rating of perceived exertion. There was no difference in the estimates of external mechanical work at any target force. The dominant mechanisms limiting time to failure of sustained isometric contractions with the elbow flexor muscles appear to change at target forces between 30 and 45% MVC, with load compliance being a significant factor at lower forces only.


2005 ◽  
Vol 93 (3) ◽  
pp. 1381-1392 ◽  
Author(s):  
Carol J. Mottram ◽  
Jennifer M. Jakobi ◽  
John G. Semmler ◽  
Roger M. Enoka

Despite a similar rate of change in average electromyographic (EMG) activity, previous studies have observed different rates of change in mean arterial pressure, heart rate, perceived exertion, and fluctuations in motor output during the performance of fatiguing contractions that involved different types of loads. To obtain a more direct measure of the motor output from the spinal cord, the purpose of this study was to compare the discharge characteristics of the same motor unit in biceps brachii during the performance of two types of fatiguing contractions. In separate tests with the upper arm vertical and the elbow flexed to 1.57 rad, the seated subjects maintained either a constant upward force at the wrist (force task) or a constant elbow angle (position task) for a prescribed duration. The force and position tasks were performed in random order at a target force equal to 3.5 ± 2.1% (mean ± SD) of the maximal voluntary contraction (MVC) force above the recruitment threshold of the isolated motor unit. Each subject maintained the two tasks for an identical duration (161 ± 96 s) at a mean target force of 22.2 ± 13.4% MVC (range: 3–49% MVC). The dependent variables included the discharge characteristics of the same motor unit in biceps brachii, fluctuations in motor output (force or acceleration), mean arterial pressure, heart rate, and rating of perceived exertion. Despite similar increases in the amplitude of the averaged EMG (% MVC) for the elbow flexor muscles during both tasks ( P = 0.60), the rates of increase in mean arterial pressure ( P < 0.001), rating of perceived exertion ( P = 0.023), and fluctuations in motor output ( P = 0.003) were greater during the position task compared with the force task. Consistent with these differences, mean discharge rate declined at a greater rate during the position task ( P = 0.03), and the coefficient of variation for discharge rate increased only during the position task ( P = 0.02). Furthermore, more motor units were recruited during the position task compared with the force task ( P = 0.01). These findings indicate that despite a comparable net muscle torque, the rate of increase in the motor output from the spinal cord was greater during the position task.


2016 ◽  
Vol 120 (9) ◽  
pp. 1039-1046 ◽  
Author(s):  
Christopher J. Arellano ◽  
David Caha ◽  
Joseph E. Hennessey ◽  
Ioannis G. Amiridis ◽  
Stéphane Baudry ◽  
...  

The purpose of this study was to determine the adjustments in the level of coactivation during a steadiness task performed by young and old adults after the torque-generating capacity of the antagonist muscles was reduced by a fatiguing contraction. Torque steadiness (coefficient of variation) and electromyographic activity of the extensor and flexor carpi radialis muscles were measured as participants matched a wrist extensor target torque (10% maximum) before and after sustaining an isometric contraction (30% maximum) with wrist flexors to task failure. Time to failure was similar ( P = 0.631) for young (417 ± 121 s) and old (452 ± 174 s) adults. The reduction in maximal voluntary contraction torque (%initial) for the wrist flexors after the fatiguing contraction was greater ( P = 0.006) for young (32.5 ± 13.7%) than old (21.8 ± 6.6%) adults. Moreover, maximal voluntary contraction torque for the wrist extensors declined for old (−13.7 ± 12.7%; P = 0.030), but not young (−5.4 ± 13.8%; P = 0.167), adults. Torque steadiness during the matching task with the wrist extensors was similar before and after the fatiguing contraction for both groups, but the level of coactivation increased after the fatiguing contraction for old ( P = 0.049) but not young ( P = 0.137) adults and was twice the amplitude for old adults ( P = 0.002). These data reveal that old adults are able to adjust the amount of antagonist muscle activity independent of the agonist muscle during steady submaximal contractions.


2008 ◽  
Vol 99 (3) ◽  
pp. 1096-1104 ◽  
Author(s):  
Malgorzata Klass ◽  
Morgan Lévénez ◽  
Roger M. Enoka ◽  
Jacques Duchateau

This study compared the mechanisms that limit the time to failure of a sustained submaximal contraction at 20% of maximum when the elbow flexors either supported an inertial load (position task) or exerted an equivalent constant torque against a rigid restraint (force task). The surface electromyogram (EMG), the motor-evoked potential (MEP) in response to transcranial magnetic stimulation (TMS) of the motor cortex, and the Hoffmann reflex (H-reflex) and maximal M-wave (Mmax) elicited by electrical stimulation of the brachial plexus were recorded in biceps brachii during the two tasks. Although the time to failure for the position task was only 44% of that for the force task, the rate of increase of the average EMG (aEMG; % initial MVC) and MEP area (% Mmax) did not differ significantly during the two tasks. At task failure, however, the increases in normalized aEMG and MEP area were significantly ( P < 0.05) greater for the force task (36.4 and 219.9%) than for the position task (22.4 and 141.7%). Furthermore, the superimposed mechanical twitch (% initial MVC), evoked by TMS during a brief MVC of the elbow flexors immediately after task failure, was increased similarly in both tasks. Although the normalized H-reflex area (% Mmax) decreased during the two fatiguing contractions, the reduction was more rapid and greater during the position task (59.8%) compared with the force task (34.7%). Taken together, the results suggest that spinal mechanisms were a major determinant of the briefer time to failure for the position task.


Sign in / Sign up

Export Citation Format

Share Document