Human neuromuscular fatigue is associated with altered Na+-K+-ATPase activity following isometric exercise

2002 ◽  
Vol 92 (4) ◽  
pp. 1585-1593 ◽  
Author(s):  
J. R. Fowles ◽  
H. J. Green ◽  
R. Tupling ◽  
S. O'Brien ◽  
B. D. Roy

The purpose of this study was to investigate the hypothesis that reductions in Na+-K+- ATPase activity are associated with neuromuscular fatigue following isometric exercise. In control (Con) and exercised (Ex) legs, force and electromyogram were measured in 14 volunteers [age, 23.4 ± 0.7 (SE) yr] before and immediately after (PST0), 1 h after (PST1), and 4 h after (PST4) isometric, single-leg extension exercise at ∼60% of maximal voluntary contraction for 30 min using a 0.5 duty cycle (5-s contraction, 5-s rest). Tissue was obtained from vastus lateralis muscle before exercise in Con and after exercise in both the Con (PST0) and Ex legs (PST0, PST1, PST4), for the measurements of Na+-K+-ATPase activity, as determined by the 3- O-methylfluorescein phosphatase (3- O-MFPase) assay. Voluntary (maximal voluntary contraction) and elicited (10, 20, 50, 100 Hz) force was reduced 30–55% ( P < 0.05) at PST0 and did not recover by PST4. Muscle action potential (M-wave) amplitude and area (measured in the vastus medialis) and 3- O-MFPase activity at PST0-Ex were less than that at PST0-Con ( P < 0.05) by 37, 25, and 38%, respectively. M-wave area at PST1-Ex was also less than that at PST1-Con ( P < 0.05). Changes in 3- O-MFPase activity correlated to changes in M-wave area across all time points ( r = 0.38, P < 0.05, n= 45). These results demonstrate that Na+-K+- ATPase activity is reduced by sustained isometric exercise in humans from that in a matched Con leg and that this reduction in Na+-K+-ATPase activity is associated with loss of excitability as indicated by M-wave alterations.

1983 ◽  
Vol 54 (2) ◽  
pp. 434-437 ◽  
Author(s):  
D. R. Seals ◽  
R. A. Washburn ◽  
P. G. Hanson ◽  
P. L. Painter ◽  
F. J. Nagle

The purpose of this study was to investigate the influence of the size of the active muscle mass on the cardiovascular response to static contraction. Twelve male subjects performed one-arm handgrip (HG), two-leg extension (LE), and a “dead-lift” maneuver (DL) in a randomly assigned order for 3 min at 30% of maximal voluntary contraction. O2 uptake (VO2), heart rate (HR), and mean intra-arterial blood pressure (MABP) were measured at rest and, in addition to absolute tension exerted, throughout contraction. There was a direct relationship between the size of the active muscle mass and the magnitude of the increases in VO2, HR, and MABP, even though all contractions were performed at the same relative intensity. Tension, VO2, HR, and MABP increased progressively from HG to LE to DL. It was concluded that at the same percentage of maximal voluntary contraction, the magnitude of the cardiovascular response to isometric exercise is directly influenced by the size of the contracting muscle mass.


2004 ◽  
Vol 96 (5) ◽  
pp. 1767-1775 ◽  
Author(s):  
S. D. Sandiford ◽  
H. J. Green ◽  
T. A. Duhamel ◽  
J. G. Perco ◽  
J. D. Schertzer ◽  
...  

This study investigated the effects of prolonged exercise performed in normoxia (N) and hypoxia (H) on neuromuscular fatigue, membrane excitability, and Na+-K+-ATPase activity in working muscle. Ten untrained volunteers [peak oxygen consumption (VV̇o2 peak) = 42.1 ± 2.8 (SE) ml·kg-1·min-1] performed 90 min of cycling during N (inspired oxygen fraction = 0.21) and during H (inspired oxygen fraction = 0.14) at ∼50% of normoxic VV̇o2 peak. During N, 3- O-methylfluorescein phosphatase activity (nmol·mg protein-1·h-1) in vastus lateralis, used as a measure of Na+-K+-ATPase activity, decreased ( P < 0.05) by 21% at 30 min of exercise compared with rest (101 ± 53 vs. 79.6 ± 4.3) with no further reductions observed at 90 min (72.8 ± 8.0). During H, similar reductions ( P < 0.05) were observed during the first 30 min (90.8 ± 5.3 vs. 79.0 ± 6.3) followed by further reductions ( P < 0.05) at 90 min (50.5 ± 3.9). Exercise in N resulted in reductions ( P < 0.05) in both quadriceps maximal voluntary contractile force (MVC; 633 ± 50 vs. 477 ± 67 N) and force at low frequencies of stimulation, namely 10 Hz (142 ± 16 vs. 86.7 ± 10 N) and 20 Hz (283 ± 32 vs. 236 ± 31 N). No changes were observed in the amplitude, duration, and area of the muscle compound action potential (M wave). Exercise in H was without additional effect in altering MVC, low-frequency force, and M-wave properties. It is concluded that, although exercise in H resulted in a greater inactivation of Na+-K+-ATPase activity compared with N, neuromuscular fatigue and membrane excitability are not differentially altered.


2002 ◽  
Vol 92 (4) ◽  
pp. 1487-1493 ◽  
Author(s):  
Romuald Lepers ◽  
Nicola A. Maffiuletti ◽  
Ludovic Rochette ◽  
Julien Brugniaux ◽  
Guillaume Y. Millet

The effects of prolonged cycling on neuromuscular parameters were studied in nine endurance-trained subjects during a 5-h exercise sustained at 55% of the maximal aerobic power. Torque during maximal voluntary contraction (MVC) of the quadriceps muscle decreased progressively throughout the exercise ( P < 0.01) and was 18% less at the end of exercise compared with the preexercise value. Peak twitch torque, contraction time, and total area of mechanical response decreased significantly ( P < 0.05) after the first hour of exercise. In contrast, changes in M-wave characteristics were significant only after the fourth hour of the exercise. Significant reductions ( P < 0.05) in electromyographic activity normalized to the M wave occurred after the first hour for the vastus lateralis muscle but only at the end of the exercise for the vastus medialis muscle. Muscle activation level, assessed by the twitch interpolation technique, decreased by 8% ( P < 0.05) at the end of the exercise. The results suggest that the time course is such that the contractile properties are significantly altered after the first hour, whereas excitability and central drive are more impaired toward the latter stages of the 5-h cycling exercise.


2000 ◽  
Vol 278 (1) ◽  
pp. R87-R94 ◽  
Author(s):  
R. Tupling ◽  
H. Green ◽  
S. Grant ◽  
M. Burnett ◽  
D. Ranney

To investigate the hypothesis that intrinsic changes in sarcoplasmic reticulum (SR) Ca2+-sequestration function can be implicated in postcontractile depression (PCD) of force in humans, muscle tissue was obtained from the vastus lateralis and determinations of maximal Ca2+ uptake and maximal Ca2+-ATPase activity were made on homogenates obtained before and after the induction of PCD. Eight untrained females, age 20.6 ± 0.75 yr (mean ± SE), performed a protocol consisting of 30 min of isometric exercise at 60% maximal voluntary contraction and at 50% duty cycle (5-s contraction and 5-s relaxation) to induce PCD. Muscle mechanical performance determined by evoked activation was measured before (0 min), during (15 and 30 min), and after (60 min) exercise. The fatiguing protocol resulted in a progressive reduction ( P < 0.05) in evoked force, which by 30 min amounted to 52% for low frequency (10 Hz) and 20% for high frequency (100 Hz). No force restoration occurred at either 10 or 100 Hz during a 60-min recovery period. Maximal SR Ca2+-ATPase activity (nmol ⋅ mg protein− 1 ⋅ min− 1) and maximal SR Ca2+ uptake (nmol ⋅ mg protein− 1 ⋅ min− 1) were depressed ( P < 0.05) by 15 min of exercise [192 ± 45 vs. 114 ± 8.7 and 310 ± 59 vs. 205 ± 47, respectively; mean ± SE] and remained depressed at 30 min of exercise. No recovery in either measure was observed during the 60-min recovery period. The coupling ratio between Ca2+-ATPase and Ca2+ uptake was preserved throughout exercise and during recovery. These results illustrate that during PCD, Ca2+uptake is depressed and that the reduction in Ca2+ uptake is due to intrinsic alterations in the Ca2+ pump. The role of altered Ca2+ sequestration in Ca2 release, cytosolic-free calcium, and PCD remains to be determined.


2003 ◽  
Vol 28 (3) ◽  
pp. 434-445 ◽  
Author(s):  
Guillaume Y. Millet ◽  
Vincent Martin ◽  
Nicola A. Maffiuletti ◽  
Alain Martin

The aim of this study was to characterize neuromuscular fatigue in knee extensor muscles after a marathon skiing race (mean ± SD duration = 159.7 ± 17.9 min). During the 2 days preceding the event and immediately after, maximal percutaneous electrical stimulations (single twitch, 0.5-s tetanus at 20 and 80 Hz) were applied to the femoral nerve of 11 trained skiers. Superimposed twitches were also delivered during maximal voluntary contraction (MVC) to determine maximal voluntary activation (%VA). EMG was recorded from the vastus lateralis muscle. MVC decreased with fatigue from 171.7 ± 33.7 to 157.3 ± 35.2 Nm (-8.4%; p < 0.005) while %VA did not change significantly. The RMS measured during MVC and peak-to-peak amplitude of the compound muscle action potential (PPA) from the vastus lateralis decreased with fatigue by about 30% (p < 0.01), but RMS•PPA−1was similar before and after the ski marathon. Peak tetanus tension at 20 Hz and 80 Hz (P020 and P080, respectively) did not change significantly, but P020•P080−1 increased (p < 0.05) after the ski marathon. Data from electrically evoked single twitches showed greater peak mechanical response, faster rate of force development, and shorter contraction time in the fatigued state. From these results it can be concluded that a ski skating marathon (a) alters slightly but significantly maximal voluntary strength of the knee extensors without affecting central activation, and (b) induces both potentiation and fatigue. Key words: low- and high-frequency electrical stimulation, central activation, potentiation


2007 ◽  
Vol 103 (4) ◽  
pp. 1402-1411 ◽  
Author(s):  
Savio W. Wong ◽  
Derek S. Kimmerly ◽  
Nicholas Massé ◽  
Ravi S. Menon ◽  
David F. Cechetto ◽  
...  

In general, cardiac regulation is dominated by the sympathetic and parasympathetic nervous systems in men and women, respectively. Our recent study had revealed sex differences in the forebrain network associated with sympathoexcitatory response to baroreceptor unloading. The present study further examined the sex differences in forebrain modulation of cardiovagal response at the onset of isometric exercise. Forebrain activity in healthy men ( n = 8) and women ( n = 9) was measured using functional magnetic resonance imaging during 5 and 35% maximal voluntary contraction handgrip exercise. Heart rate (HR), mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA) were collected in a separate recording session. During the exercise, HR and MAP increased progressively, while MSNA was suppressed ( P < 0.05). Relative to men, women demonstrated smaller HR (8 ± 2 vs. 18 ± 3 beats/min) and MAP (3 ± 2 vs. 11 ± 2 mmHg) responses to the 35% maximal voluntary contraction trials ( P < 0.05). Although a similar forebrain network was activated in both groups, the smaller cardiovascular response in women was reflected in a weaker insular cortex activation. Nevertheless, men did not show a stronger deactivation at the ventral medial prefrontal cortex, which has been associated with modulating cardiovagal activity. In contrast, the smaller cardiovascular response in women related to their stronger suppression of the dorsal anterior cingulate cortex activity, which has been associated with sympathetic control of the heart. Our findings revealed sex differences in both the physiological and forebrain responses to isometric exercise.


2006 ◽  
Vol 101 (3) ◽  
pp. 695-706 ◽  
Author(s):  
T. A. Duhamel ◽  
H. J. Green ◽  
J. G. Perco ◽  
J. Ouyang

The effects of exercise and diet on sarcoplasmic reticulum Ca2+-cycling properties in female vastus lateralis muscle were investigated in two groups of women following four different conditions. The conditions were 4 days of a low-carbohydrate (Lo CHO) and glycogen-depleting exercise plus a Lo CHO diet (Ex + Lo CHO) ( experiment 2) and 4 days of normal CHO (Norm CHO) and glycogen-depleting exercise plus Norm CHO (Ex + Norm CHO) ( experiment 1). Peak aerobic power (V̇o2peak) was 38.1 ± 1.4 (SE); n = 9 and 35.6 ± 1.4 ml·kg−1·min−1; n = 9, respectively. Sarcoplasmic reticulum properties measured in vitro in homogenates (μmol·g protein−1·min−1) indicated exercise-induced reductions ( P < 0.05) in maximal Ca2+-ATPase activity (0 > 30, 60 min > fatigue), Ca2+ uptake (0 > 30 > 60 min, fatigue), and Ca2+ release, both phase 1 (0, 30 > 60 min, fatigue) and phase 2 (0 > 30, 60 min, fatigue; 30 min > fatigue) in Norm CHO. Exercise was without effect in altering the Hill slope ( nH), defined as the slope of relationship between Ca2+-ATPase activity and Ca2+ concentration. No differences were observed between Norm CHO and Ex+Norm CHO. Compared with Norm CHO, Lo CHO resulted in a lower ( P < 0.05) Ca2+ uptake, phase 1 Ca2+ release (30 min), and nH. Ex + Lo CHO resulted in a greater ( P < 0.05) Ca2+ uptake and nH compared with Lo CHO. The results demonstrate that Lo CHO alone can disrupt SR Ca2+ cycling and that, with the exception of Ca2+ release, a glycogen-depleting session of exercise before Lo CHO can reverse the effects.


2005 ◽  
Vol 289 (1) ◽  
pp. R266-R274 ◽  
Author(s):  
A. C. Petersen ◽  
K. T. Murphy ◽  
R. J. Snow ◽  
J. A. Leppik ◽  
R. J. Aughey ◽  
...  

We investigated whether depressed muscle Na+-K+-ATPase activity with exercise reflected a loss of Na+-K+-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na+-K+-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at ∼40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na+-K+-ATPase activity via 3- O-methylfluorescein phosphatase (3- O-MFPase) activity, Na+-K+-ATPase content via [3H]ouabain binding sites, and Na+-K+-ATPase α1-, α2-, α3-, β1-, β2- and β3-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [3H]ouabain binding sites but decreased 3- O-MFPase activity by 10.7 (SD 8)% ( P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated α1-isoform mRNA by 1.5-fold at fatigue ( P < 0.05). This increase was inversely correlated with the percent change in 3- O-MFPase activity from rest to fatigue (%Δ3- O-MFPaserest-fatigue) ( r = −0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) α1-isoform mRNA was increased 1.4-fold ( P < 0.05) and approached a significant inverse correlation with %Δ3- O-MFPaserest-fatigue ( r = −0.56, P = 0.08). Exercise elevated α2-isoform mRNA at fatigue 2.5-fold ( P < 0.05), which was inversely correlated with %Δ3- O-MFPaserest-fatigue ( r = −0.60, P = 0.05). The average postexercise α2-isoform mRNA was increased 2.2-fold ( P < 0.05) and was inversely correlated with the %Δ3- O-MFPaserest-fatigue ( r = −0.68, P < 0.05). Nonsignificant correlations were found between %Δ3- O-MFPaserest-fatigue and other isoforms. Thus acute exercise transiently decreased Na+-K+-ATPase activity, which was correlated with increased Na+-K+-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na+-K+-ATPase activity with exercise.


Sign in / Sign up

Export Citation Format

Share Document