Clara cell secretory protein and phospholipase A2 activity modulate acute ventilator-induced lung injury in mice

2005 ◽  
Vol 98 (4) ◽  
pp. 1264-1271 ◽  
Author(s):  
Sawako Yoshikawa ◽  
Takashige Miyahara ◽  
Susan D. Reynolds ◽  
Barry R. Stripp ◽  
Mircea Anghelescu ◽  
...  

Lung vascular permeability is acutely increased by high-pressure and high-volume ventilation. To determine the roles of mechanically activated cytosolic PLA2 (cPLA2) and Clara cell secretory protein (CCSP), a modulator of cPLA2 activity, we compared lung injury with and without a PLA2 inhibitor in wild-type mice and CCSP-null mice (CCSP−/−) ventilated with high and low peak inflation pressures (PIP) for 2- or 4-h periods. After ventilation with high PIP, we observed significant increases in the bronchoalveolar lavage albumin concentrations, lung wet-to-dry weight ratios, and lung myeloperoxidase in both genotypes compared with unventilated controls and low-PIP ventilated mice. All injury variables except myeloperoxidase were significantly greater in the CCSP−/− mice relative to wild-type mice. Inhibition of cPLA2 in wild-type and CCSP−/− mice ventilated at high PIP for 4 h significantly reduced bronchoalveolar lavage albumin and total protein and lung wet-to-dry weight ratios compared with vehicle-treated mice of the same genotype. Membrane phospho-cPLA2 and cPLA2 activities were significantly elevated in lung homogenates of high-PIP ventilated mice of both genotypes but were significantly higher in the CCSP−/− mice relative to the wild-type mice. Inhibition of cPLA2 significantly attenuated both the phospho-cPLA2 increase and increased cPLA2 activity due to high-PIP ventilation. We propose that mechanical activation of the cPLA2 pathway contributes to acute high PIP-induced lung injury and that CCSP may reduce this injury through inhibition of the cPLA2 pathway and reduction of proinflammatory products produced by this pathway.

2004 ◽  
Vol 286 (3) ◽  
pp. L604-L612 ◽  
Author(s):  
Sawako Yoshikawa ◽  
Judy A. King ◽  
Susan D. Reynolds ◽  
Barry R. Stripp ◽  
James C. Parker

We compared the transport of three proteins with different hydrodynamic radii with ultrastructural changes in lungs of intact mice ventilated at peak inflation pressures (PIP) of 15, 35, 45, and 55 cmH2O for 2 h and PIP of 55 cmH2O for 0.5 and 1 h. After 2 h of ventilation, significant increases were observed in plasma Clara cell secretory protein (1.9 nm radius) at 35 cmH2O PIP and in bronchoalveolar lavage fluid albumin (3.6 nm radius) at 45 cmH2O PIP and IgG (5.6 nm radius) at 55 cmH2O PIP. Increased concentrations of all three proteins and lung wet-to-dry weight ratios were significantly correlated with PIP and ventilation time. Clara cell secretory protein and albumin increased significantly after 0.5 h of 55 cmH2O PIP, but IgG increased only after 2 h. Separation of endothelium or epithelium to form blebs was apparent only in small vessels (15-30 μm diameter) at 45 cmH2O PIP and after 0.5 h at 55 cmH2O PIP but became extensive after 2 h of ventilation at 55 cmH2O PIP. Junctional gaps between cells were rarely observed. Ultrastructural lung injury and protein clearances across the air-blood barrier were related to ventilation time and PIP levels. Protein clearances increased in relation to molecular size, consistent with increasing dimensions and frequency of transmembrane aqueous pathways.


2005 ◽  
Vol 6 (6) ◽  
pp. 698-706 ◽  
Author(s):  
Thomas L. Miller ◽  
Beth N. Shashikant ◽  
James M. Melby ◽  
Aprile L. Pilon ◽  
Thomas H. Shaffer ◽  
...  

2007 ◽  
Vol 292 (1) ◽  
pp. L144-L153 ◽  
Author(s):  
Daisuke Okutani ◽  
Bing Han ◽  
Marco Mura ◽  
Thomas K. Waddell ◽  
Shaf Keshavjee ◽  
...  

Pentraxin 3 (PTX3) is an acute-phase protein, which can be produced by a variety of tissue cells at the site of infection or inflammation. It plays an important role in innate immunity in the lung and in mediating acute lung injury. The aim of this study was to determine the effect of mechanical ventilation on PTX3 expression in multiple lung injury models. Male Sprague-Dawley rats were challenged with intravenous injection of lipopolysaccharide (LPS) or hemorrhage followed by resuscitation (HS). The animals were then subjected to either relatively higher (12 ml/kg) or lower (6 ml/kg, positive end-expiratory pressure of 5 cmH2O) volume ventilation for 4 h. High-volume ventilation significantly enhanced PTX3 expression in the lung, either alone or in combination with LPS or hemorrhage. A significant increase of PTX3 immunohistochemistry staining in the lung was seen in all injury groups. The PTX3 expression was highly correlated with the severity of lung injury determined by blood gas, lung elastance, and wet-to-dry ratio. To determine the effects of HS, LPS, or injurious ventilation (25 ml/kg) alone on PTX3 expression, another group of rats was studied. Injurious ventilation significantly damaged the lung and increased PTX3 expression. A local expression of PTX3 induced by high-volume ventilation, either alone or in combination with other pathological conditions, suggests that it may be an important mediator in ventilator-induced lung injury.


2009 ◽  
Vol 107 (6) ◽  
pp. 1900-1910 ◽  
Author(s):  
Anna A. Birukova ◽  
Panfeng Fu ◽  
Junjie Xing ◽  
Konstantin G. Birukov

Prostaglandin I2 (PGI2) has been shown to attenuate vascular constriction, hyperpermeability, inflammation, and acute lung injury. However, molecular mechanisms of PGI2 protective effects on pulmonary endothelial cells (EC) are not well understood. We tested a role of cAMP-activated Epac-Rap1 pathway in the barrier protective effects of PGI2 analog iloprost in the murine model of ventilator-induced lung injury. Mice were treated with iloprost (2 μg/kg) after onset of high tidal volume ventilation (30 ml/kg, 4 h). Bronchoalveolar lavage, histological analysis, and measurements of Evans blue accumulation were performed. In vitro, microvascular EC barrier function was assessed by morphological analysis of agonist-induced gap formation and monitoring of Rho pathway activation and EC permeability. Iloprost reduced bronchoalveolar lavage protein content, neutrophil accumulation, capillary filtration coefficient, and Evans blue albumin extravasation caused by high tidal volume ventilation. Small-interfering RNA-based Rap1 knockdown inhibited protective effects of iloprost. In vitro, iloprost increased barrier properties of lung microvascular endothelium and alleviated thrombin-induced EC barrier disruption. In line with in vivo results, Rap1 depletion attenuated protective effects of iloprost in the thrombin model of EC permeability. These data describe for the first time protective effects for Rap1-dependent signaling against ventilator-induced lung injury and pulmonary endothelial barrier dysfunction.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1643
Author(s):  
Sultan Almuntashiri ◽  
Chelsea James ◽  
Xiaoyun Wang ◽  
Budder Siddiqui ◽  
Duo Zhang

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection was first reported in Wuhan, China, and was declared a pandemic by the World Health Organization (WHO) on 20 March 2020. The respiratory system is the major organ system affected by COVID-19. Numerous studies have found lung abnormalities in patients with COVID-19, including shortness of breath, respiratory failure, and acute respiratory distress syndrome. The identification of lung-specific biomarkers that are easily measurable in serum would be valuable for both clinicians and patients with such conditions. This review is focused on the pneumoproteins and their potential to serve as biomarkers for COVID-19-associated lung injury, including Krebs von den Lungen-6 (KL-6), surfactant proteins (SP-A, SP-B, SP-C, SP-D), and Clara cell secretory protein (CC16). The current findings indicate the aforementioned pneumoproteins may reflect the severity of pulmonary manifestations and could serve as potential biomarkers in COVID-19-related lung injury.


1998 ◽  
Vol 275 (5) ◽  
pp. L924-L930 ◽  
Author(s):  
Kevin S. Harrod ◽  
Amber D. Mounday ◽  
Barry R. Stripp ◽  
Jeffrey A. Whitsett

Clara cell secretory protein (CCSP) is an abundant 10-kDa polypeptide synthesized and secreted primarily by nonciliated bronchiolar epithelial cells in the mammalian lung. To determine the potential role of CCSP in pulmonary inflammation after acute viral infection, CCSP gene-targeted {CCSP-deficient [CCSP(−/−)]} mice were exposed to a recombinant E1- and E3-deficient adenoviral vector, Av1Luc1, intratracheally. Lung inflammation was markedly increased in CCSP(−/−) mice compared with wild-type control mice and was associated with an increased number of polymorphonuclear cell infiltrates and epithelial cell injury in both conducting airways and alveolar regions. Histological evidence of pulmonary inflammation in CCSP(−/−) mice was associated with increased production of cytokine (interleukin-1β and -6 and tumor necrosis factor-α) mRNA and protein, as well as chemokine (macrophage inflammatory protein-1α and -2 and monocyte chemoattractant protein-1) mRNA expression within the lung in response to adenoviral infection. Adenoviral-mediated gene transfer was decreased in CCSP(−/−) mice relative to wild-type mice as measured by luciferase enzyme activity in lung homogenates. The present study suggests that CCSP is involved in modulating lung inflammation during viral infection and supports a role for CCSP in lung host defense.


2008 ◽  
Vol 167 (11) ◽  
Author(s):  
Kosmas Sarafidis ◽  
Theodora Stathopoulou ◽  
Elisavet Diamanti ◽  
Vasiliki Soubasi ◽  
Charalambos Agakidis ◽  
...  

Author(s):  
Kai Su ◽  
Jianguo Wang ◽  
Yang Lv ◽  
Ming Tian ◽  
You-Yang Zhao ◽  
...  

Ventilator-induced lung injury is associated with an increase in mortality in patients with respiratory dysfunction, although mechanical ventilation is an essential intervention implemented in the intensive care unit. Intrinsic molecular mechanisms for minimizing lung inflammatory injury during mechanical ventilation remain poorly defined. We hypothesize that Yes-associated protein (YAP) expression in endothelial cells protects the lung against ventilator-induced injury. Wild type and endothelial-specific YAP-deficient mice were subjected to a low (7 ml/kg) or high (21 ml/kg) tidal volume (VT) ventilation for 4 h. Infiltration of inflammatory cells into the lung, vascular permeability, lung histopathology, and the levels of inflammatory cytokines were measured. Here we showed that mechanical ventilation with high VT up-regulated YAP protein expression in pulmonary endothelial cells. Endothelial-specific YAP knockout mice following high VT ventilation exhibited increased neutrophil counts and protein content in bronchoalveolar lavage fluid, Evans blue leakage and histological lung injury compared to wild-type littermate controls. Deletion of YAP in endothelial cells exaggerated vascular endothelial (VE)-cadherin phosphorylation, downregulation of vascular endothelial protein tyrosine phosphatase (VE-PTP) and dissociation of VE-cadherin and catenins following mechanical ventilation. Importantly, exogenous expression of wild type VE-PTP in the pulmonary vasculature rescued YAP ablation-induced increases in neutrophil counts and protein content in bronchoalveolar lavage fluid, vascular leakage, and histological lung injury as well as VE-cadherin phosphorylation and dissociation from catenins following ventilation. These data demonstrate that YAP expression in endothelial cells suppresses lung inflammatory response and edema formation by modulating VE-PTP-mediated VE-cadherin phosphorylation and thus plays a protective role in ventilator-induced lung injury.


Sign in / Sign up

Export Citation Format

Share Document