In vivo evaluation of the effectiveness of bronchial thermoplasty with computed tomography

2005 ◽  
Vol 98 (5) ◽  
pp. 1603-1606 ◽  
Author(s):  
Robert H. Brown ◽  
William Wizeman ◽  
Christopher Danek ◽  
Wayne Mitzner

A recent study has reported that the application of thermal energy delivered through a bronchoscope (bronchial thermoplasty) impairs the ability of airway smooth muscle to shorten in response to methacholine (MCh)(Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, Keast TM, Loomas BE, Wizeman WJ, Hogg JC, and Leff AR. J Appl Physiol 97: 1946–1953, 2004). If such a technique is successful, it has the potential to serve as a therapy to attenuate airway narrowing in asthmatic subjects regardless of the initiating cause that stimulates the smooth muscle. In the present study, we have applied high-resolution computed tomography to accurately quantify the changes in airway area before and after a standard MCh aerosol challenge in airways treated with bronchial thermoplasty. We studied a total of 193 airways ranging from 2 to 15 mm in six dogs. These were divided into treated and control populations. The MCh dose-response curves in untreated airways and soon-to-be-treated airways were superimposable. In contrast, the dose-response curves in treated airways were shifted upward at all points, showing a significantly decreased sensitivity to MCh at both 2 and 4 wk posttreatment. These results thus show that treated airways have significantly increased luminal area at any dose of inhaled MCh compared with untreated airways. The work in this study thus supports the underlying concept that impairing the smooth muscle may be an effective treatment for asthma.

1994 ◽  
Vol 77 (3) ◽  
pp. 1325-1332 ◽  
Author(s):  
D. Cheung ◽  
H. van der Veen ◽  
J. den Hartigh ◽  
J. H. Dijkman ◽  
P. J. Sterk

We tested the hypothesis that the inhaled tachykinin substance P (SP) can induce hyperresponsiveness to methacholine in asthmatic subjects in vivo. Nine atopic nonsmoking asthmatic males with normal forced expiratory volume in 1 s (FEV1; > 80% predicted) and increased methacholine sensitivity [provocative concn causing 20% fall in FEV1 (PC20) < 8 mg/ml] participated in a two-period placebo-controlled crossover study. Dose-response curves to SP (0.25–8 mg/ml) and placebo were recorded on 2 randomized days at least 1 wk apart, and methacholine tests were done 24 h before and 2 and 24 h after these challenges. The responses were measured by FEV1 (%fall from baseline). The position of the methacholine dose-response curves was expressed by the PC20 FEV1 and by the maximal response by the plateau level (MFEV1). SP caused a dose-dependent fall in FEV1 (P < 0.001). There was a slight increase in the PC20 FEV1 at 2 and 24 h, which was not significantly different between placebo and SP. Similarly, there was a reduction in MFEV1 at 2 h after both pretreatments. However, at 24 h after SP inhalation, MFEV1 increased compared with placebo. These changes in MFEV1 were significantly different between SP and placebo by 5.2 +/- 2.2% fall (SE) (P < 0.05). We conclude that 1) a bronchoconstrictive dose of SP, compared with placebo, enhances maximal airway narrowing to methacholine in asthma 24 h after inhalation and 2) tolerance develops to high doses of inhaled methacholine. These findings are suggestive of a role of SP in causing excessive airway narrowing in asthma by inflammatory mechanisms.


Author(s):  
Shensheng Zhao ◽  
Sebastiaan Wesseling ◽  
Bert Spenkelink ◽  
Ivonne M. C. M. Rietjens

AbstractThe present study predicts in vivo human and rat red blood cell (RBC) acetylcholinesterase (AChE) inhibition upon diazinon (DZN) exposure using physiological based kinetic (PBK) modelling-facilitated reverse dosimetry. Due to the fact that both DZN and its oxon metabolite diazoxon (DZO) can inhibit AChE, a toxic equivalency factor (TEF) was included in the PBK model to combine the effect of DZN and DZO when predicting in vivo AChE inhibition. The PBK models were defined based on kinetic constants derived from in vitro incubations with liver fractions or plasma of rat and human, and were used to translate in vitro concentration–response curves for AChE inhibition obtained in the current study to predicted in vivo dose–response curves. The predicted dose–response curves for rat matched available in vivo data on AChE inhibition, and the benchmark dose lower confidence limits for 10% inhibition (BMDL10 values) were in line with the reported BMDL10 values. Humans were predicted to be 6-fold more sensitive than rats in terms of AChE inhibition, mainly because of inter-species differences in toxicokinetics. It is concluded that the TEF-coded DZN PBK model combined with quantitative in vitro to in vivo extrapolation (QIVIVE) provides an adequate approach to predict RBC AChE inhibition upon acute oral DZN exposure, and can provide an alternative testing strategy for derivation of a point of departure (POD) in risk assessment.


1988 ◽  
Vol 65 (5) ◽  
pp. 1944-1949 ◽  
Author(s):  
P. J. Antol ◽  
S. J. Gunst ◽  
R. E. Hyatt

Tachyphylaxis to aerosolized histamine was studied in dogs anesthetized with thiamylal after pretreatment with prostaglandin synthesis inhibitors. Three consecutive histamine dose-response curves were obtained in nine dogs pretreated with 5 mg/kg indomethacin; two of these nine were also pretreated with 10 mg/kg indomethacin. Seven of the nine dogs were pretreated with 4 mg/kg sodium meclofenamate; four of these seven were also pretreated with 12 mg/kg. All dogs had tachyphylaxis at high concentrations of histamine regardless of inhibitor used. Pretreatment with indomethacin while the dogs were under alpha-chloralose-urethan anesthesia gave similar results. Histamine tachyphylaxis was also studied both in the presence and in the absence of indomethacin in tracheal smooth muscle strips obtained from seven additional dogs. A decrease in the median effective dose to histamine was observed in the indomethacin-treated strips, but tachyphylaxis to histamine remained. We conclude that prostaglandin synthesis inhibition does not reverse histamine tachyphylaxis either in vivo or in vitro. Thus the mechanism of histamine tachyphylaxis remains unexplained.


1987 ◽  
Vol 253 (4) ◽  
pp. G497-G501 ◽  
Author(s):  
R. Leth ◽  
B. Elander ◽  
U. Haglund ◽  
L. Olbe ◽  
E. Fellenius

The histamine H2-receptor on the human parietal cell has been characterized by using dose-response curves and the negative logarithm of the molar concentration of an antagonist (pA2) analyses of cimetidine antagonism of betazole, histamine, and impromidine stimulation in isolated human and rabbit gastric glands. To evaluate the in vitro results, betazole-stimulated gastric acid secretion with and without cimetidine was also studied in healthy subjects. In the in vivo model, individual dose-response curves were shifted to the right with increasing cimetidine concentrations, but this was counteracted by increasing betazole doses, indicating competitive, reversible antagonism. The pA2 values ranged from 6.1 to 6.3. In isolated human gastric glands, impromidine was shown to be eight times more potent than histamine, indicating higher receptor affinity, but the maximally stimulated aminopyrine accumulation was the same as for histamine, and the pA2 values for cimetidine antagonism did not differ significantly, i.e., 5.7 (histamine) and 6.1 (impromidine). In isolated rabbit gastric glands, cimetidine inhibited the histamine- and impromidine-stimulated response with pA2 values of 6.0 and 7.3, respectively. Impromidine was shown to be approximately 100 times more potent than in human gastric glands, whereas histamine had the same potency. This confirms the role of the histamine H2-receptor and suggests a difference between the species concerning receptor affinity.


1989 ◽  
Vol 66 (2) ◽  
pp. 638-643 ◽  
Author(s):  
T. M. Murphy ◽  
N. M. Munoz ◽  
J. Moss ◽  
J. S. Blake ◽  
M. M. Mack ◽  
...  

We studied the secretory correlates of tracheal smooth muscle contraction caused by platelet-activating factor (PAF) in nine mongrel dogs in vivo. In five dogs, dose-response curves were generated by rapid intra-arterial injection of 10(-10) to 10(-6) mol PAF into the isolated tracheal circulation; tracheal contractile response was measured isometrically in situ. To examine the mechanism by which PAF elicits contraction of canine trachealis, concentrations of serotonin (5-HT) and histamine were assayed in the venous effluent as the arteriovenous difference (AVd) in mediator concentration across the airway for each level of contraction. PAF caused dose-related active tracheal tension to a maximum of 37.2 +/- 5.4 g/cm (10(-6) mol PAF). The AVd in 5-HT increased linearly from 0.20 +/- 0.05 (10(-9) mol PAF) to 3.5 +/- 0.3 ng/ml (10(-6) mol PAF) (P less than 0.005). In contrast, the AVd in histamine was insignificant and did not change with increasing doses of PAF. A positive correlation was obtained between the AVd in 5-HT and active tracheal tension (r = 0.92, P less than 0.001); there was no correlation between AVd in histamine and active tension (r = -0.16). PAF-induced parasympathetic activation was not mediated by 5-HT; contraction elicited by exogenous 5-HT was not affected by muscarinic blockade. We conclude that nonparasympathetically mediated contraction elicited acutely by PAF in dogs results at least in part from secondary release of serotonin and is not mediated by histamine.


2011 ◽  
Vol 111 (6) ◽  
pp. 1703-1709 ◽  
Author(s):  
Megan M. Wenner ◽  
Thad E. Wilson ◽  
Scott L. Davis ◽  
Nina S. Stachenfeld

Although dose-response curves are commonly used to describe in vivo cutaneous α-adrenergic responses, modeling parameters and analyses methods are not consistent across studies. The goal of the present investigation was to compare three analysis methods for in vivo cutaneous vasoconstriction studies using one reference data set. Eight women (22 ± 1 yr, 24 ± 1 kg/m2) were instrumented with three cutaneous microdialysis probes for progressive norepinephrine (NE) infusions (1 × 10−8, 1 × 10−6, 1 × 10−5, 1 × 10−4, and 1 × 10−3 logM). NE was infused alone, co-infused with NG-monomethyl-l-arginine (l-NMMA, 10 mM) or Ketorolac tromethamine (KETO, 10 mM). For each probe, dose-response curves were generated using three commonly reported analyses methods: 1) nonlinear modeling without data manipulation, 2) nonlinear modeling with data normalization and constraints, and 3) percent change from baseline without modeling. Not all data conformed to sigmoidal dose-response curves using analysis 1, whereas all subjects' curves were modeled using analysis 2. When analyzing only curves that fit the sigmoidal model, NE + KETO induced a leftward shift in ED50 compared with NE alone with analyses 1 and 2 ( F test, P < 0.05) but only tended to shift the response leftward with analysis 3 (repeated-measures ANOVA, P = 0.08). Neither maximal vasoconstrictor capacity (Emax) in analysis 1 nor %change CVC change from baseline in analysis 3 were altered by blocking agents. In conclusion, although the overall detection of curve shifts and interpretation was similar between the two modeling methods of curve fitting, analysis 2 produced more sigmoidal curves.


1981 ◽  
Vol 241 (4) ◽  
pp. H557-H563 ◽  
Author(s):  
J. M. Price ◽  
D. L. Davis ◽  
E. B. Knauss

Dose-response curves were obtained from dog anterior tibial artery rings at various lengths (L) to determine whether sensitivity to norepinephrine (NE) and potassium (K+) depends on arterial circumference. The dose for half maximal response (ED50) was determined by graphical estimation and by calculation from a best fit curve. For both NE and K+: 1) ED50 was lowest (most sensitive) at L for maximum active force (Lmax) and increased significantly as L decreased from Lmax; 2) ED50 at 1.0 and 1.15 Lmax was not significantly different; 3) ED50 of repeated dose-response curves at Lmax was not significantly different; and 4) when the direction of length change was reversed (from decreasing to increasing), the direction of change in ED50 was also reversed (from increasing to decreasing). Change in the dose for 10% maximal response was the same as ED50. The results did not depend on the method of determining ED50 or on whether responses were expressed as absolute values or as relative values. The results show that sensitivity of vascular smooth muscle depends on L and that the length-sensitivity relation is similar to the length-active tension relation. Similarity of results for NE and K+ indicate that length-dependent sensitivity does not depend on the method of stimulation.


1991 ◽  
Vol 69 (6) ◽  
pp. 805-811 ◽  
Author(s):  
K. Tomioka ◽  
J. T. Jackowski ◽  
W. M. Abraham

We have investigated the effects of leukotrienes (LTs) on isolated tracheal smooth muscle from sheep sensitive to Ascaris suum antigen. LTC4 and LTD4 produced dose-dependent contractions of sheep trachea, but LTE4 was virtually inactive. YM-17690, a non-analogous LT agonist, produced no contractile response up to 100 μM. Indomethacin (5 μM) had no effect on LTC4- and LTD4-induced contractions. L-Serine borate (45 mM), an inhibitor of γ-glutamyl transpeptidase, shifted the dose–response curve of LTC4 to the left by 161-fold, and L-cysteine (6 mM), an inhibitor of aminopeptidase, shifted the dose–response curves of LTC4 and LTD4 to the left by 67- and 23-fold, respectively. YM-16638 (1 μM), an LT antagonist, shifted the dose–response curves of LTC4 and LTD4 to the right with pKB values of 6.57 and 7.13, respectively. YM-16638 did not affect LTC4-induced contractions of L-serine borate-treated tissues, indicating that the compound acts only on LTD4 receptors in sheep trachea. LTE4 (1 μM) shifted the dose–response curves of LTC4 and LTD4 to the right with pKB values of 6.87 and 7.31, respectively. YM-17690 (10 μM) showed effects similar to LTE4, suggesting that the compound acts as an LTE4 agonist in sheep trachea. These results suggest that in sheep tracheal smooth muscle (a) LTC4 and LTD4 produce contractions, (b) these LT-induced contractions are not mediated by cyclooxygenase products, (c) LTC4 is converted to LTD4 and then to LTE4, and (d) the potency of the LTC4- and LTD4-induced contractions is increased when their conversion to LTE4 is inhibited. This potentiation may result from the inability of LTE4 to contract sheep trachea and (or) its antagonist actions.Key words: leukotriene antagonist, receptors, asthma.


2017 ◽  
Author(s):  
Andrew K. Smith ◽  
Yanli Xu ◽  
Glen E.P. Ropella ◽  
C. Anthony Hunt

AbstractAn improved understanding of in vivo-to-in vitro hepatocyte changes is crucial to interpreting in vitro data correctly and further improving hepatocyte-based in vitro-to-in vivo extrapolations to human targets. We demonstrate using virtual experiments as a means to help untangle plausible causes of inaccurate extrapolations. We start with virtual mice that have biomimetic software livers. Earlier, using those mice, we discovered model mechanisms that enabled achieving quantitative validation targets while also providing plausible causal explanations for temporal characteristics of acetaminophen hepatotoxicity. We isolated virtual hepatocytes, created a virtual culture, and then conducted dose-response experiments in both culture and mice. We expected the two dose-response curves to be displaced. We were surprised that they crossed because it evidenced that simulated acetaminophen metabolism and toxicity are different for virtual culture and mouse contexts even though individual hepatocyte mechanisms were unchanged. Crossing dose-response curves is a virtual example of an in vivo-to-in vitro disconnect. We use detailed results of experiments to explain the disconnect. Individual hepatocytes contribute differently to system level phenomena. In liver, hepatocytes are exposed to acetaminophen sequentially. Relative production of the reactive acetaminophen metabolite is largest (smallest) in pericentral (periportal) hepatocytes. Because that sequential exposure is absent in culture, hepatocytes from different lobular locations do not respond the same. A virtual Culture-to-Mouse translation can stand as a scientifically challengeable theory explaining an in vitro-in vivo disconnect. It provides a framework to develop more reliable interpretations of in vitro observations, which then may be used to improve extrapolations.AbbreviationsaHPCanalog hepatocyteAPAPacetaminophenCVCentral VeinSSsinusoidal segmentNAPQIN-acetyl-p-benzoquinone iminemitoDmitochondrial damage productsnonMDnon-mitochondrial damage products


1981 ◽  
Author(s):  
J Over ◽  
J A van Mourik ◽  
P van den Brink-Zantingh ◽  
R Smit-Jansen

Assay of Factor VIII coagulant activity (VIII: C) in Factor VIII concentrates has since long met difficulties, such as l) non-paralleility of dose-response curves of plasma standard and Factor VIII concentrate, 2) spuriously low values of VIII: C in concentrates as revealed by abnormally high in vivo recoveries after transfusion, and 3) large interlaboratory variation in assay results. In an attempt to analyze the cause of these problems several parameters of the one-stage assay system were varied systematically and their effect on the parallellity of dose-response curves and on the final VIII: C value was analyzed. Nonparallel1ity was partially corrected with a protein-rich dilution medium, and almost always completely with undiluted instead of 1:1 diluted hemophilic substrate plasma. In both conditions apparently higher VIII:C values were found.A number of assay systems used by different producers of Factor VIII concentrates were compared. The standard and, in some cases, the phospholipid reagent seemed to contribute for the largest past to the inter1aboratory variation, but also other, as yet unidentified, factors exerted some influence. These findings initiated a cooperative study by five Red Cross Blood Transfusion Services in Europe on standardization of the one-stage assay for VIII:C. This resulted in a better correspondence between these institutes (CV 13%) compared to the previous situation (CV 23%).It is concluded that 1) substrate plasma should not be diluted, especially when Factor VIII concentrate is to be tested against a plasma standard, 2) the standard should be of the same type as the testmaterial, and 3) this standard should be properly calibrated against the International Standard for Factor VIII.


Sign in / Sign up

Export Citation Format

Share Document