Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans

2007 ◽  
Vol 102 (4) ◽  
pp. 1604-1611 ◽  
Author(s):  
Emmanuel G. Churchley ◽  
Vernon G. Coffey ◽  
David J. Pedersen ◽  
Anthony Shield ◽  
Kate A. Carey ◽  
...  

To determine whether preexercise muscle glycogen content influences the transcription of several early-response genes involved in the regulation of muscle growth, seven male strength-trained subjects performed one-legged cycling exercise to exhaustion to lower muscle glycogen levels (Low) in one leg compared with the leg with normal muscle glycogen (Norm) and then the following day completed a unilateral bout of resistance training (RT). Muscle biopsies from both legs were taken at rest, immediately after RT, and after 3 h of recovery. Resting glycogen content was higher in the control leg (Norm leg) than in the Low leg (435 ± 87 vs. 193 ± 29 mmol/kg dry wt; P < 0.01). RT decreased glycogen content in both legs ( P < 0.05), but postexercise values remained significantly higher in the Norm than the Low leg (312 ± 129 vs. 102 ± 34 mmol/kg dry wt; P < 0.01). GLUT4 (3-fold; P < 0.01) and glycogenin mRNA abundance (2.5-fold; not significant) were elevated at rest in the Norm leg, but such differences were abolished after exercise. Preexercise mRNA abundance of atrogenes was also higher in the Norm compared with the Low leg [atrogin: ∼14-fold, P < 0.01; RING (really interesting novel gene) finger: ∼3-fold, P < 0.05] but decreased for atrogin in Norm following RT ( P < 0.05). There were no differences in the mRNA abundance of myogenic regulatory factors and IGF-I in the Norm compared with the Low leg. Our results demonstrate that 1) low muscle glycogen content has variable effects on the basal transcription of select metabolic and myogenic genes at rest, and 2) any differences in basal transcription are completely abolished after a single bout of heavy resistance training. We conclude that commencing resistance exercise with low muscle glycogen does not enhance the activity of genes implicated in promoting hypertrophy.

2007 ◽  
Vol 103 (3) ◽  
pp. 1063-1069 ◽  
Author(s):  
Shannon E. Pratt ◽  
Raymond J. Geor ◽  
Lawrence L. Spriet ◽  
L. Jill McCutcheon

The time course of insulin sensitivity, skeletal muscle glycogen and GLUT4 content, and glycogen synthase (GS) activity after a single bout of intense exercise was examined in eight horses. On separate days, a euglycemic-hyperinsulinemic clamp (EHC) was undertaken at 0.5, 4, or 24 h after exercise or after 48 h of rest [control (Con)]. There was no increase in mean glucose infusion rate (GIR) with exercise (0.5-, 4-, and 24-h trials), and GIR was significantly decreased at 0.5 h postexercise (GIR: 8.6 ± 2.7, 6.7 ± 2.0, 9.0 ± 2.0, and 10.6 ± 2.2 mg·kg−1·min−1 for Con and at 0.5, 4, and 24 h, respectively). Before each EHC, muscle glycogen content (mmol glucosyl units/kg dry muscle) was higher ( P < 0.05) for Con (565 ± 102) than for other treatments (317 ± 84, 362 ± 79, and 382 ± 74 for 0.5, 4, and 24 h, respectively) and muscle GLUT4 content was unchanged. Pre-EHC active-to-total GS activity ratio was higher ( P < 0.05) at 0.5, 4, and 24 h after exercise than in Con. Post-EHC active GS and GS activity ratio were higher ( P < 0.05) in Con and at 24 h. There was a significant inverse correlation ( r = −0.43, P = 0.02) between glycogen content and GS activity ratio but no relationship between GS activity and GIR. The lack of increase in insulin sensitivity, determined by EHC, after exercise that resulted in a significant reduction in muscle glycogen content is consistent with the slow rate of muscle glycogen resynthesis observed in equine studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sonia Métayer-Coustard ◽  
Sophie Tesseraud ◽  
Christophe Praud ◽  
David Royer ◽  
Thierry Bordeau ◽  
...  

In chickens, a divergent selection on the Pectoralis major pHu allowed the creation of the pHu+ and pHu− lines, which represent a unique model for studying the biological control of carbohydrate storage in muscle. The present study aimed to describe the early mechanisms involved in the establishment of pHu+ and pHu− phenotypes. At hatching, pHu+ chicks were slightly heavier but exhibited lower plasma glucose and triglyceride and higher uric acid. After 5 days, pHu+ chicks exhibited higher breast meat yield compared to pHu− while their body weight was no different. At both ages, in vivo muscle glycogen content was lower in pHu+ than in pHu− muscles. The lower ability of pHu+ chicks to store carbohydrate in their muscle was associated with the increased expression of SLC2A1 and SLC2A3 genes coding glucose transporters 1 and 3, and of CS and LDHα coding key enzymes of oxidative and glycolytic pathways, respectively. Reduced muscle glycogen content at hatching of the pHu+ was concomitant with higher activation by phosphorylation of S6 kinase 1/ribosomal protein S6 pathway, known to activate protein synthesis in chicken muscle. In conclusion, differences observed in muscle at slaughter age in the pHu+ and pHu− lines are already present at hatching. They are associated with several changes related to both carbohydrate and protein metabolism, which are likely to affect their ability to use eggs or exogenous nutrients for muscle growth or energy storage.


1996 ◽  
Vol 7 (1) ◽  
pp. 52-54 ◽  
Author(s):  
P. Mariani ◽  
K. Lundström ◽  
U. Gustafsson ◽  
A. -C. Enfält ◽  
R. K. Juneja ◽  
...  

1993 ◽  
Vol 25 (Supplement) ◽  
pp. S186
Author(s):  
H. A. Kolzer ◽  
E. van Breda ◽  
P. Geurlen ◽  
H. Kuipers ◽  
J. F.C. Glatz

2014 ◽  
Vol 54 (4) ◽  
pp. 459 ◽  
Author(s):  
D. G. Pighin ◽  
W. Brown ◽  
D. M. Ferguson ◽  
A. D. Fisher ◽  
R. D. Warner

Pre-slaughter stress may decrease muscle glycogen content, a key element for a suitable low ultimate pH and prevention of dark-cutting meat. Body temperature monitoring is a tool used in research on animal stress, as an indicator of stress events. Possible relationships between body temperature of sheep and post-mortem muscle glycogen were investigated in this study. Body temperature was measured with intravaginal loggers inserted into each animal at 3 days pre-slaughter, to record body temperature every 3 min over a period of 3 days. Blood samples were collected from each animal at exsanguination for measurement of glucose and lactic acid concentrations. The muscle content of glycogen and lactic acid were determined in samples of M. longissimus collected at the level of the 13th rib, at 1 h post-slaughter. A plot of body temperature versus time showed a rise in body temperature from all animals during events such as mustering, loading onto the truck, unloading at the abattoir, during pre-slaughter handling and at slaughter. Pearson’s correlation coefficients were determined between (1) the main temperature increments occurring between farm and slaughter; and (2) post-slaughter muscle glycogen and lactate levels. A significant negative correlation was detected between elevation in core body temperature due to physical stress of sheep and muscle glycogen levels at slaughter. A low correlation was detected between body temperature and blood glucose or lactate concentrations. Further research should examine the relationship between core body temperature and meat quality in order to better understand the complex relationship between animal stress and meat quality.


2002 ◽  
Vol 282 (3) ◽  
pp. E688-E694 ◽  
Author(s):  
T. J. Stephens ◽  
Z.-P. Chen ◽  
B. J. Canny ◽  
B. J. Michell ◽  
B. E. Kemp ◽  
...  

The effect of prolonged moderate-intensity exercise on human skeletal muscle AMP-activated protein kinase (AMPK)α1 and -α2 activity and acetyl-CoA carboxylase (ACCβ) and neuronal nitric oxide synthase (nNOSμ) phosphorylation was investigated. Seven active healthy individuals cycled for 30 min at a workload requiring 62.8 ± 1.3% of peak O2consumption (V˙o 2 peak) with muscle biopsies obtained from the vastus lateralis at rest and at 5 and 30 min of exercise. AMPKα1 activity was not altered by exercise; however, AMPKα2 activity was significantly ( P < 0.05) elevated after 5 min (∼2-fold), and further elevated ( P < 0.05) after 30 min (∼3-fold) of exercise. ACCβ phosphorylation was increased ( P < 0.05) after 5 min (∼18-fold compared with rest) and increased ( P< 0.05) further after 30 min of exercise (∼36-fold compared with rest). Increases in AMPKα2 activity were significantly correlated with both increases in ACCβ phosphorylation and reductions in muscle glycogen content. Fat oxidation tended ( P = 0.058) to increase progressively during exercise. Muscle creatine phosphate was lower ( P < 0.05), and muscle creatine, calculated free AMP, and free AMP-to-ATP ratio were higher ( P < 0.05) at both 5 and 30 min of exercise compared with those at rest. At 30 min of exercise, the values of these metabolites were not significantly different from those at 5 min of exercise. Phosphorylation of nNOSμ was variable, and despite the mean doubling with exercise, statistically significance was not achieved ( P = 0.304). Western blots indicated that AMPKα2 was associated with both nNOSμ and ACCβ consistent with them both being substrates of AMPKα2 in vivo. In conclusion, AMPKα2 activity and ACCβ phosphorylation increase progressively during moderate exercise at ∼60% of V˙o 2 peak in humans, with these responses more closely coupled to muscle glycogen content than muscle AMP/ATP ratio.


2014 ◽  
Vol 85 (8) ◽  
pp. 793-798 ◽  
Author(s):  
Tomohiko Komatsu ◽  
Noriaki Shoji ◽  
Kunihiko Saito ◽  
Keiichi Suzuki

Sign in / Sign up

Export Citation Format

Share Document