scholarly journals Sex differences in exercise-induced diaphragmatic fatigue in endurance-trained athletes

2010 ◽  
Vol 109 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Jordan A. Guenette ◽  
Lee M. Romer ◽  
Jordan S. Querido ◽  
Romeo Chua ◽  
Neil D. Eves ◽  
...  

There is evidence that female athletes may be more susceptible to exercise-induced arterial hypoxemia and expiratory flow limitation and have greater increases in operational lung volumes during exercise relative to men. These pulmonary limitations may ultimately lead to greater levels of diaphragmatic fatigue in women. Accordingly, the purpose of this study was to determine whether there are sex differences in the prevalence and severity of exercise-induced diaphragmatic fatigue in 38 healthy endurance-trained men ( n = 19; maximal aerobic capacity = 64.0 ± 1.9 ml·kg−1·min−1) and women ( n = 19; maximal aerobic capacity = 57.1 ± 1.5 ml·kg−1·min−1). Transdiaphragmatic pressure (Pdi) was calculated as the difference between gastric and esophageal pressures. Inspiratory pressure-time products of the diaphragm and esophagus were calculated as the product of breathing frequency and the Pdi and esophageal pressure time integrals, respectively. Cervical magnetic stimulation was used to measure potentiated Pdi twitches (Pdi,tw) before and 10, 30, and 60 min after a constant-load cycling test performed at 90% of peak work rate until exhaustion. Diaphragm fatigue was considered present if there was a ≥15% reduction in Pdi,tw after exercise. Diaphragm fatigue occurred in 11 of 19 men (58%) and 8 of 19 women (42%). The percent drop in Pdi,tw at 10, 30, and 60 min after exercise in men ( n = 11) was 30.6 ± 2.3, 20.7 ± 3.2, and 13.3 ± 4.5%, respectively, whereas results in women ( n = 8) were 21.0 ± 2.1, 11.6 ± 2.9, and 9.7 ± 4.2%, respectively, with sex differences occurring at 10 and 30 min ( P < 0.05). Men continued to have a reduced contribution of the diaphragm to total inspiratory force output (pressure-time product of the diaphragm/pressure-time product of the esophagus) during exercise, whereas diaphragmatic contribution in women changed very little over time. The findings from this study point to a female diaphragm that is more resistant to fatigue relative to their male counterparts.

Author(s):  
Daniel Enrique Rodriguez Bauza ◽  
Patricia Silveyra

Exercise-induced bronchoconstriction (EIB) is a common complication of athletes and individuals who exercise regularly. It is estimated that about 90% of patients with underlying asthma (a sexually dimorphic disease) experience EIB; however, sex differences in EIB have not been studied extensively. With the goal of better understanding the prevalence of EIB in males and females, and because atopy has been reported to occur at higher rates in athletes, in this study, we investigated sex differences in EIB and atopy in athletes. A systematic literature review identified 60 studies evaluating EIB and/or atopy in post-pubertal adult athletes (n = 7501). Collectively, these studies reported: (1) a 23% prevalence of EIB in athletes; (2) a higher prevalence of atopy in male vs. female athletes; (3) a higher prevalence of atopy in athletes with EIB; (4) a significantly higher rate of atopic EIB in male vs. female athletes. Our analysis indicates that the physiological changes that occur during exercise may differentially affect male and female athletes, and suggest an interaction between male sex, exercise, and atopic status in the course of EIB. Understanding these sex differences is important to provide personalized management plans to athletes with underlying asthma and/or atopy.


Author(s):  
Jordan A. Guenette ◽  
Lee M. Romer ◽  
Jordan S. Querido ◽  
Romeo Chua ◽  
Neil D. Eves ◽  
...  

2021 ◽  
Author(s):  
Thomas Poulard ◽  
Damien Bachasson ◽  
Quentin Fossé ◽  
Marie-Cécile Niérat ◽  
Jean-Yves Hogrel ◽  
...  

Background The relationship between the diaphragm thickening fraction and the transdiaphragmatic pressure, the reference method to evaluate the diaphragm function, has not been clearly established. This study investigated the global and intraindividual relationship between the thickening fraction of the diaphragm and the transdiaphragmatic pressure. The authors hypothesized that the diaphragm thickening fraction would be positively and significantly correlated to the transdiaphragmatic pressure, in both healthy participants and ventilated patients. Methods Fourteen healthy individuals and 25 mechanically ventilated patients (enrolled in two previous physiologic investigations) participated in the current study. The zone of apposition of the right hemidiaphragm was imaged simultaneously to transdiaphragmatic pressure recording within different breathing conditions, i.e., external inspiratory threshold loading in healthy individuals and various pressure support settings in patients. A blinded offline breath-by-breath analysis synchronously computed the changes in transdiaphragmatic pressure, the diaphragm pressure-time product, and diaphragm thickening fraction. Global and intraindividual relationships between variables were assessed. Results In healthy subjects, both changes in transdiaphragmatic pressure and diaphragm pressure-time product were moderately correlated to diaphragm thickening fraction (repeated measures correlation = 0.40, P &lt; 0.0001; and repeated measures correlation = 0.38, P &lt; 0.0001, respectively). In mechanically ventilated patients, changes in transdiaphragmatic pressure and thickening fraction were weakly correlated (repeated measures correlation = 0.11, P = 0.008), while diaphragm pressure-time product and thickening fraction were not (repeated measures correlation = 0.04, P = 0.396). Individually, changes in transdiaphragmatic pressure and thickening fraction were significantly correlated in 8 of 14 healthy subjects (ρ = 0.30 to 0.85, all P &lt; 0.05) and in 2 of 25 mechanically ventilated patients (ρ = 0.47 to 0.64, all P &lt; 0.05). Diaphragm pressure-time product and thickening fraction correlated in 8 of 14 healthy subjects (ρ = 0.41 to 0.82, all P &lt; 0.02) and in 2 of 25 mechanically ventilated patients (ρ = 0.63 to 0.66, all P &lt; 0.01). Conclusions Overall, diaphragm function as assessed with transdiaphragmatic pressure was weakly related to diaphragm thickening fraction. The diaphragm thickening fraction should not be used in healthy subjects or ventilated patients when changes in diaphragm function are evaluated. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


1996 ◽  
Vol 81 (5) ◽  
pp. 2156-2164 ◽  
Author(s):  
Mark A. Babcock ◽  
David F. Pegelow ◽  
Bruce D. Johnson ◽  
Jerome A. Dempsey

Babcock, Mark A., David F. Pegelow, Bruce D. Johnson, and Jerome A. Dempsey. Aerobic fitness effects on exercise-induced low-frequency diaphragm fatigue. J. Appl. Physiol. 81(5): 2156–2164, 1996.—We used bilateral phrenic nerve stimulation (BPNS; at 1, 10, and 20 Hz at functional residual capacity) to compare the amount of exercise-induced diaphragm fatigue between two groups of healthy subjects, a high-fit group [maximal O2consumption (V˙o 2 max) = 69.0 ± 1.8 ml ⋅ kg−1 ⋅ min−1, n = 11] and a fit group (V˙o 2 max = 50.4 ± 1.7 ml ⋅ kg−1 ⋅ min−1, n = 13). Both groups exercised at 88–92% V˙o 2 maxfor about the same duration (15.2 ± 1.7 and 17.9 ± 2.6 min for high-fit and fit subjects, respectively, P > 0.05). The supramaximal BPNS test showed a significant reduction ( P< 0.01) in the BPNS transdiaphragmatic pressure (Pdi) immediately after exercise of −23.1 ± 3.1% for the high-fit group and −23.1 ± 3.8% ( P > 0.05) for the fit group. Recovery of the BPNS Pdi took 60 min in both groups. The high-fit group exercised at a higher absolute workload, which resulted in a higher CO2production (+26%), a greater ventilatory demand (+16%) throughout the exercise, and an increased diaphragm force output (+28%) over the initial 60% of the exercise period. Thereafter, diaphragm force output declined, despite a rising minute ventilation, and it was not different between most of the high-fit and fit subjects. In summary, the high-fit subjects showed diaphragm fatigue as a result of heavy endurance exercise but were also partially protected from excessive fatigue, despite high ventilatory requirements, because their hyperventilatory response to endurance exercise was reduced, their diaphragm was utilized less in providing the total ventilatory response, and possibly their diaphragm aerobic capacity was greater.


2018 ◽  
Vol 124 (3) ◽  
pp. 805-811 ◽  
Author(s):  
Nicholas B. Tiller ◽  
Thomas R. Aggar ◽  
Christopher R. West ◽  
Lee M. Romer

The aim of this case report was to determine whether maximal upper body exercise was sufficient to induce diaphragm fatigue in a Paralympic champion adaptive rower with low-lesion spinal cord injury (SCI). An elite arms-only oarsman (age: 28 yr; stature: 1.89 m; and mass: 90.4 kg) with motor-complete SCI (T12) performed a 1,000-m time trial on an adapted rowing ergometer. Exercise measurements comprised pulmonary ventilation and gas exchange, diaphragm EMG-derived indexes of neural respiratory drive, and intrathoracic pressure-derived indexes of respiratory mechanics. Diaphragm fatigue was assessed by measuring pre- to postexercise changes in the twitch transdiaphragmatic pressure (Pdi,tw) response to anterolateral magnetic stimulation of the phrenic nerves. The time trial (248 ± 25 W, 3.9 min) elicited a peak O2 uptake of 3.46 l/min and a peak pulmonary ventilation of 150 l/min (57% MVV). Breath-to-stroke ratio was 1:1 during the initial 400 m and 2:1 thereafter. The ratio of inspiratory transdiaphragmatic pressure to diaphragm EMG (neuromuscular efficiency) fell from rest to 600 m (16.0 vs. 3.0). Potentiated Pdi,tw was substantially reduced (−33%) at 15–20 min postexercise, with only partial recovery (−12%) at 30–35 min. This is the first report of exercise-induced diaphragm fatigue in SCI. The decrease in diaphragm neuromuscular efficiency during exercise suggests that the fatigue was partly due to factors independent of ventilation (e.g., posture and locomotion). NEW & NOTEWORTHY This case report provides the first objective evidence of exercise-induced diaphragm fatigue in spinal cord injury (SCI) and, for that matter, in any population undertaking upper body exercise. Our data support the notion that high levels of exercise hyperpnea and factors other than ventilation (e.g., posture and locomotion) are responsible for the fatigue noted after upper body exercise. The findings extend our understanding of the limits of physiological function in SCI.


1995 ◽  
Vol 78 (1) ◽  
pp. 82-92 ◽  
Author(s):  
M. A. Babcock ◽  
B. D. Johnson ◽  
D. F. Pegelow ◽  
O. E. Suman ◽  
D. Griffin ◽  
...  

We examined the effects of hypoxia on exercise-induced diaphragmatic fatigue. Eleven subjects with a mean maximal O2 uptake of 52.4 +/- 0.7 ml.kg-1.min-1 completed one normoxic (arterial O2 saturation 96-94%) and one hypoxic (inspiratory O2 fraction = 0.15; arterial O2 saturation 83–77%) exercise test at 85% maximal O2 uptake to exhaustion on separate days. Supramaximal bilateral phrenic nerve stimulation (BPNS) was used to determine the pressure generation of the diaphragm pre- and postexercise at 1, 10, and 20 Hz. There was increased flow limitation during hypoxic vs. normoxic exercise. There was a decrease in hypoxic exercise time (normoxic 24.9 +/- 0.7 min vs. hypoxic 15.8 +/- 0.8 min; P < 0.05). After exercise the BPNS transdiaphragmatic pressure (Pdi) was significantly reduced at 1 and 10 Hz after both exercise tests. The BPNS Pdi was recovered to control values by 60 min postnormoxic exercise but was still reduced 90 min posthypoxic exercise. The mean percent fall in the stimulated BPNS Pdi was similar (normoxic -24.8 +/- 4.7%; hypoxic -18.8 +/- 3.0%) after both exercise conditions. Experiencing the same amount of diaphragm fatigue in a shorter time period in hypoxic exercise may have been due to 1) the increased expiratory flow limitation and diaphragmatic muscle work, 2) decreased O2 transport to the diaphragm, and/or 3) increased levels of circulating metabolites.


Author(s):  
Daniel Rodriguez Bauza ◽  
Patricia Silveyra

Exercise induced bronchoconstriction (EIB) is a common complication of athletes and individuals who exercise regularly. It is estimated that about 90% of patients with underlying asthma experience EIB. Sex differences in the prevalence of asthma have been widely reported, with higher rates in boys vs. girls before puberty, and higher rates in women than men after puberty. Because atopy has been reported to occur at higher rates in athletes than in non-athletes, in this study we investigated sex differences in EIB and atopy in athletes. A systematic literature review identified 60 studies evaluating EIB and/or atopy in post-pubertal adult athletes (n=7501). Collectively, these studies reported: 1) a 23% prevalence of EIB in athletes; 2) a higher prevalence of atopy in male athletes vs. females; 3) a higher prevalence of atopy in athletes with EIB; and 4) a significantly higher rate of atopic EIB in male vs. female athletes. Our analysis indicates that the physiological changes that occur during exercise may differentially affect male and female athletes, and suggest an interaction between male sex, exercise, and atopic status in the course of EIB. Understanding these sex differences is important to provide personalized management plans to athletes with underlying asthma and/or atopy.


2010 ◽  
Vol 109 (2) ◽  
pp. 358-366 ◽  
Author(s):  
Bryan J. Taylor ◽  
Christopher R. West ◽  
Lee M. Romer

Cervical spinal cord injury (CSCI) results in a decrease in the capacity of the lungs and chest wall for pressure, volume, and airflow generation. We asked whether such impairments might increase the potential for exercise-induced diaphragmatic fatigue and mechanical ventilatory constraint in this population. Seven Paralympic wheelchair rugby players (mean ± SD peak oxygen uptake = 16.9 ± 4.9 ml·kg−1·min−1) with traumatic CSCI (C5–C7) performed arm-crank exercise to the limit of tolerance at 90% of their predetermined peak work rate. Diaphragm function was assessed before and 15 and 30 min after exercise by measuring the twitch transdiaphragmatic pressure (Pdi,tw) response to bilateral anterolateral magnetic stimulation of the phrenic nerves. Ventilatory constraint was assessed by measuring the tidal flow volume responses to exercise in relation to the maximal flow volume envelope. Pdi,tw was not different from baseline at any time after exercise (unpotentiated Pdi,tw = 19.3 ± 5.6 cmH2O at baseline, 19.8 ± 5.0 cmH2O at 15 min after exercise, and 19.4 ± 5.7 cmH2O at 30 min after exercise; P = 0.16). During exercise, there was a sudden, sustained rise in operating lung volumes and an eightfold increase in the work of breathing. However, only two subjects showed expiratory flow limitation, and there was substantial capacity to increase both flow and volume (<50% of maximal breathing reserve). In conclusion, highly trained athletes with CSCI do not develop exercise-induced diaphragmatic fatigue and rarely reach mechanical ventilatory constraint.


1995 ◽  
Vol 78 (5) ◽  
pp. 1710-1719 ◽  
Author(s):  
M. A. Babcock ◽  
D. F. Pegelow ◽  
S. R. McClaran ◽  
O. E. Suman ◽  
J. A. Dempsey

n nine normal humans we compared the effects on diaphragm fatigue of whole body exercise to exhaustion (86–93% of maximal O2 uptake for 13.2 +/- 2.0 min) to voluntary increases in the tidal integral of transdiaphragmatic pressure (integral of Pdi) while at rest at the same magnitude and frequency and for the same duration as those during exercise. After the endurance exercise, we found a consistent and significant fall (-26 +/- 2.9%, range -19.2 to -41.0%) in the Pdi response to supramaximal bilateral phrenic nerve stimulation at all stimulation frequencies (1, 10, and 20 Hz). Integral of Pdi.fB (where fB is breathing frequency) achieved during exercise averaged 509 +/- 81.0 cmH2O/min (range 304.0–957.0 cmH2O/min). At rest, voluntary production of integral of Pdi.fB, which was < 550–600 cmH2O/min (approximately 4 times the resting eupenic integral of Pdi.fB or 60–70% of Pdi capacity), did not result in significant diaphragmatic fatigue, whereas sustained voluntary production of integral of Pdi.fB in excess of these threshold values usually did result in significant fatigue. Thus, with few exceptions (5 of 23 tests) the ventilatory requirements of whole body endurance exercise demanded a level of integral of Pdi.fB that, by itself, was not fatiguing. The rested first dorsal interosseous muscle showed no fatigue in response to supramaximal ulnar nerve stimulation after whole body exercise. We postulate that the effects of locomotor muscle activity, such as competition for blood flow distribution and/or extracellular fluid acidosis, in conjunction with a contracting diaphragm account for most of the exercise-induced diaphragm fatigue.


2004 ◽  
Vol 61 (4) ◽  
Author(s):  
S. Nava ◽  
L.M. Fuccella ◽  
B. Viglianti

Background. A low body mass index is one of the strongest predictors of mortality in Chronic Obstructive Pulmonary Disease (COPD) patients. Under-nutrition is often associated with skeletal muscle wasting and hypophosphatemia. Aim and Methods. In a pilot, randomised, doubleblind placebo-controlled study, we assessed the physiological effects of phosphorous administration in 17 stable undernourished COPD patients, on diaphragmatic function, breathing pattern, neuromuscular drive (P0.1) and dyspnea score. Fructose 1.6-diphosphate (FDP) or placebo was administered i.v. for 7 consecutive days. Results. FDP administration was associated with a marked increase in inspiratory time (Ti) that induced a significant rise (p&lt;0.05) in the Pressure Time Product of the diaphragm per breath (PTPdi/b). However, since breathing frequency also decreased, the Pressure Time Product per minute of the diaphragm (PTPdi/min), index of diaphragmatic energy expenditure was markedly reduced. The efficiency of the respiratory pump in clearing CO2 was also improved, although not significantly, in the FDP group (p=0.09) as well as the maximal transdiaphragmatic pressure during the sniff manoeuvre (Pdi,sniff). Conclusions. This pilot physiological study showed that phosphorus replacement in undernourished, stable COPD patients, may be associated with a complex modification in respiratory pattern and diaphragmatic functions, leading to a marked although not significant reduction in PTPdi/min.


Sign in / Sign up

Export Citation Format

Share Document