scholarly journals Dynamics of tidal volume and ventilation heterogeneity under pressure-controlled ventilation during bronchoconstriction: a simulation study

2010 ◽  
Vol 109 (4) ◽  
pp. 1211-1218 ◽  
Author(s):  
Chanikarn Wongviriyawong ◽  
Tilo Winkler ◽  
R. Scott Harris ◽  
Jose G. Venegas

The difference in effectiveness between volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) on mechanically ventilated patients during bronchoconstriction is not totally clear. PCV is thought to deliver a more uniform distribution of ventilation than VCV, but the delivered tidal volume could be unstable and affected by changes in the degree of constriction. To explore the magnitude of these effects, we ran numerical simulations with both modes of ventilation in a network model of the lung in which we incorporated not only the pressure and flow dynamics along the airways but also the effect of cycling pressures and tissue tethering forces during breathing on the dynamic equilibrium of the airway smooth muscle (ASM) (Venegas et al., Nature 434: 777–782). These simulations provided an illustration of changes in airway radii, the total delivered tidal volume stability, and distribution of ventilation following a transition from VCV to PCV and during progressively increasing ASM activation level. These simulations yielded three major results. First, the ventilation heterogeneity and patchiness in ventilation during steady-state VCV were substantially reduced after the transition to PCV. Second, airway radius, tidal volume, and the distribution of ventilation under severe bronchoconstriction were highly sensitive to the setting of inspiratory pressure selected for PCV and to the degree of activation of the ASM. Third, the dynamic equilibrium of active ASM exposed to cycling forces is the major contributor to these effects. These insights may provide a theoretical framework to guide the selection of ventilation mode, the adjustment of ventilator settings, and the interpretation of clinical observations in mechanically ventilated asthmatic patients.

2020 ◽  
Author(s):  
Yu Jiang ◽  
Lingling Jiang ◽  
Jun Hu ◽  
Ye Zhang

Abstract Background: The reliability of pulse pressure variation (PPV) and stroke volume variation (SVV) to predict fluid responsiveness have not previously been established when using pressure-controlled ventilation-volume guaranteed (PCV-VG) mode. We hypothesized that with a transient increase in tidal volume from 6 to 8 mL/kg of predicted body weight (PBW), which we reference as the “tidal volume challenge (TVC)”, the changes to PPV and SVV will be an indicator of fluid responsiveness.Methods: The patients were first ventilated with a tidal volume of (Vt) 6 mL/kg of predicted body weight (PBW) using PCV-VG. Following intravenous anesthesia induction, PPV6 and SVV6 were recorded, then the TVC was performed, which increased Vt from 6 mL/kg to 8 mL/kg PBW for 1 minute and PPV8 and SVV8 were recorded again. The changes in value of PPV and SVV (ΔPPV6-8 and ΔSVV6-8) were calculated after TVC. Following the minute of TVC, the tidal volume was returned to 6 ml/kg PBW for the fluid challenge (FC), a colloid infusion of 6ml/kg PBW for 20 minutes. Patients were classified as responders if there was an increase in cardiac index (CI) of more than 15% after FC, otherwise the patients were identified as non-responders. Eligible patients were divided into groups of responders or non-responders.Results: 37 patients were classified as responders and 44 were non-responders. PPV6 and SVV6 could not predict the fluid responsiveness, while PPV8 and SVV8 could predict the fluid responsiveness when using PCV-VG mode. The changes in value of PPV and SVV after TVC (ΔPPV6-8 and ΔSVV6-8) identified true fluid responders with the highest sensitivity and specificity in the above variables, which predicted fluid responsiveness with the area under the receiver operating characteristic curves (AUCs) (95% CIs) being 0.96 (0.93-1.00) and 0.98 (0.96-1.00), respectively. No significant difference was found when comparing the AUCs of ΔPPV6-8 and ΔSVV6-8 (P > 0.05). Linear correlation was represented between the change value of CI after FC and the change value of SVV or PPV after TVC (r = 0.68; P < 0.0001 and r = 0.77; P < 0.0001, respectively).Conclusions: A transient increase in tidal volume, which we reference as the “tidal volume challenge (TVC)” could enhance the predictive value of PPV and SVV for the evaluation of fluid responsiveness in patients under ventilation with PCV-VG.Trial registration: Chinese Clinical Trial Registry (ChiCTR2000028995). Prospectively registered on 11 January 2020. http://www.medresman.org.


2004 ◽  
Vol 32 (Supplement) ◽  
pp. A110
Author(s):  
Wolfgang Huber ◽  
Friedemann Meiswinkel ◽  
Andreas Umgelter ◽  
Florian Eckel ◽  
Michael Hennig ◽  
...  

2021 ◽  
Author(s):  
Ignacio Lugones ◽  
Matias Ramos ◽  
Maria Fernanda Biancolini ◽  
Roberto Eduardo Orofino Giambastiani

INTRODUCTION: The SARS-CoV2 pandemic has created a sudden lack of ventilators. DuplicAR® is a novel device that allows simultaneous and independent ventilation of two subjects with a single ventilator. The aims of this study are: a) to determine the efficacy of DuplicAR® to independently regulate the peak and positive-end expiratory pressures in each subject, both under pressure-controlled ventilation and volume-controlled ventilation, and b) to determine the ventilation mode in which DuplicAR® presents the best performance and safety. MATERIALS AND METHODS: Two test lungs are connected to a single ventilator using DuplicAR®. Three experimental stages are established: 1) two identical subjects, 2) two subjects with the same weight but different lung compliance, and 3) two subjects with different weight and lung compliance. In each stage, the test lungs are ventilated in two ventilation modes. The positive-end expiratory pressure requirements are increased successively in one of the subjects. The goal is to achieve a tidal volume of 7 ml/kg for each subject in all different stages through manipulation of the ventilator and the DuplicAR® controllers. RESULTS: DuplicAR® allows adequate ventilation of two subjects with different weight and/or lung compliance and/or PEEP requirements. This is achieved by adjusting the total tidal volume for both subjects (in volume-controlled ventilation) or the highest peak pressure needed (in pressure-controlled ventilation) along with the basal positive-end expiratory pressure on the ventilator, and simultaneously manipulating the DuplicAR® controllers to decrease the tidal volume or the peak pressure in the subject that needs less and/or to increase the positive-end expiratory pressure in the subject that needs more. While ventilatory goals can be achieved in any of the ventilation modes, DuplicAR® performs better in pressure-controlled ventilation, as changes experienced in the variables of one subject do not modify the other one. CONCLUSIONS: DuplicAR® is an effective tool to manage the peak inspiratory pressure and the positive-end expiratory pressure independently in two subjects connected to a single ventilator. The driving pressure can be adjusted to meet the requirements of subjects with different weight and lung compliance. Pressure-controlled ventilation has advantages over volume-controlled ventilation and is therefore the recommended ventilation mode.


2002 ◽  
Vol 34 (3) ◽  
pp. 196-202 ◽  
Author(s):  
Lily C. Chow ◽  
Andre Vanderhal ◽  
Jorge Raber ◽  
Augusto Sola

Sign in / Sign up

Export Citation Format

Share Document