ventilation modes
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 82)

H-INDEX

19
(FIVE YEARS 2)

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 28
Author(s):  
Yun Hu ◽  
Yihui Wu ◽  
Qun Wang ◽  
Jian Hang ◽  
Qingman Li ◽  
...  

Mechanical ventilation consumes a huge amount of global energy. Natural ventilation is a crucial solution for reducing energy consumption and enhancing the capacity of atmospheric self-purification. This paper evaluates the impacts of indoor-outdoor temperature differences on building ventilation and indoor-outdoor air pollutant dispersion in urban areas. The Computational Fluid Dynamics (CFD) method is employed to simulate the flow fields in the street canyon and indoor environment. Ventilation conditions of single-side ventilation mode and cross-ventilation mode are investigated. Air change rate, normalized concentration of traffic-related air pollutant (CO), intake fraction and exposure concentration are calculated to for ventilation efficiency investigation and exposure assessment. The results show that cross ventilation increases the air change rate for residential buildings under isothermal conditions. With the indoor-outdoor temperature difference, heating could increase the air change rate of the single-side ventilation mode but restrain the capability of the cross-ventilation mode in part of the floors. Heavier polluted areas appear in the upstream areas of single-side ventilation modes, and the pollutant can diffuse to middle-upper floors in cross-ventilation modes. Cross ventilation mitigates the environmental health stress for the indoor environment when indoor-outdoor temperature difference exits and the personal intake fraction is decreased by about 66% compared to the single-side ventilation. Moreover, the existence of indoor-outdoor temperature differences can clearly decrease the risk of indoor personal exposure under both two natural ventilation modes. The study numerically investigates the building ventilation and pollutant dispersion in the urban community with natural ventilation. The method and the results are helpful references for optimizing the building ventilation plan and improving indoor air quality.


Author(s):  
Artem Tret'yakov

The basic information about "IM View" software, necessary hardware for its correct operation is given. The main directions of further development of the program are outlined.


2021 ◽  
Vol 11 (24) ◽  
pp. 12139
Author(s):  
Monica Lilioara Cherecheș ◽  
Nelu Cristian Cherecheș ◽  
Adrian Alexandru Ciobanu ◽  
Sebastian Valeriu Hudișteanu ◽  
Emilian Florin Țurcanu ◽  
...  

In the context of energy conservation and sustainable development, building design should take into account the energy efficiency criteria by using renewable energy sources. Double-skin facades (DSF) represent innovative energy-efficient techniques that have gained increasing interest worldwide. The present study reports the results of an experimental campaign performed on a full-scale double-skin façade using the in-situ measurement methodology. The thermodynamic behavior of the façade is studied under real exterior climatic conditions in Romania in hot and cold seasons, and performance indicators in terms of pre-heating efficiency and dynamic insulation efficiency were determined. Three summer periods are analyzed corresponding to the outdoor air curtain scenario for three ventilation modes in naturally or mechanically ventilated single-story DSF. Results revealed that the third ventilation scenario, which combines horizontal and vertical openings, gives the best efficiency of 71.3% in the double skin façade functioning. During the cold season, the channel façade behaved like a thermal buffer between the building and the exterior air, ensuring the thermal energy for partial or integral heating of the building.


Respiration ◽  
2021 ◽  
pp. 1-9
Author(s):  
Jacopo Saccomanno ◽  
Christoph Ruwwe-Glösenkamp ◽  
Konrad Neumann ◽  
Felix Doellinger ◽  
Pavlina Lenga ◽  
...  

<b><i>Background:</i></b> Endobronchial valve therapy has proven to reduce lung hyperinflation and decrease disease burden in patients with severe lung emphysema. Exclusion of collateral ventilation (CV) of the targeted lobe by using an endobronchial assessment system (Chartis; PulmonX, Drive Redwood City, CA, USA) in combination with software-based fissure integrity analysis (FCS [fissure completeness score]) of computed tomography scans of the lung are established tools to select appropriate patients for endobronchial valve treatment. So far, there is no conclusive evidence if the ventilation mode during bronchoscopy impacts the outcome of Chartis assessments. <b><i>Methods:</i></b> Patients with Chartis assessments and software-based quantification of FCS (StratX; PulmonX, Drive Redwood City, CA, USA) were enrolled in this retrospective study. During bronchoscopy, pulmonary fissure integrity was evaluated with the Chartis assessment system in each patient first under spontaneous breathing and subsequently under high-frequency (HF) jet ventilation. <b><i>Results:</i></b> In total, 102 patients were analyzed. Four Chartis phenotypes CV positive (CV+), CV negative (CV−), low flow, and low plateau in spontaneous breathing and HF jet ventilation were identified. The frequency of each Chartis phenotype per lobe was similar in both settings. When comparing Chartis assessments in spontaneous breathing and HF jet ventilation, there was an overall good concordance rate for all analyzed fissures. In agreement, receiver operating characteristic analysis of the FCS showed an almost similar prediction for CV+ and CV− status independent of the ventilation modes. <b><i>Conclusion:</i></b> Chartis assessment in spontaneous breathing and HF jet ventilation had similar rates in detecting CV in lung emphysema. Our results suggest that both modes are equivalent for the assessment of CV.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Masaaki Sakuraya ◽  
Hiromu Okano ◽  
Tomoyuki Masuyama ◽  
Shunsuke Kimata ◽  
Satoshi Hokari

Abstract Background Although non-invasive respiratory management strategies have been implemented to avoid intubation, patients with de novo acute hypoxaemic respiratory failure (AHRF) are high risk of treatment failure. In the previous meta-analyses, the effect of non-invasive ventilation was not evaluated according to ventilation modes in those patients. Furthermore, no meta-analyses comparing non-invasive respiratory management strategies with invasive mechanical ventilation (IMV) have been reported. We performed a network meta-analysis to compare the efficacy of non-invasive ventilation according to ventilation modes with high-flow nasal oxygen (HFNO), standard oxygen therapy (SOT), and IMV in adult patients with AHRF. Methods The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, and Ichushi databases were searched. Studies including adults with AHRF and randomized controlled trials (RCTs) comparing two different respiratory management strategies (continuous positive airway pressure (CPAP), pressure support ventilation (PSV), HFNO, SOT, or IMV) were reviewed. Results We included 25 RCTs (3,302 participants: 27 comparisons). Using SOT as the reference, CPAP (risk ratio [RR] 0.55; 95% confidence interval [CI] 0.31–0.95; very low certainty) was associated significantly with a lower risk of mortality. Compared with SOT, PSV (RR 0.81; 95% CI 0.62–1.06; low certainty) and HFNO (RR 0.90; 95% CI 0.65–1.25; very low certainty) were not associated with a significantly lower risk of mortality. Compared with IMV, no non-invasive respiratory management was associated with a significantly lower risk of mortality, although all certainties of evidence were very low. The probability of being best in reducing short-term mortality among all possible interventions was higher for CPAP, followed by PSV and HFNO; IMV and SOT were tied for the worst (surface under the cumulative ranking curve value: 93.2, 65.0, 44.1, 23.9, and 23.9, respectively). Conclusions When performing non-invasive ventilation among patients with de novo AHRF, it is important to avoid excessive tidal volume and lung injury. Although pressure support is needed for some of these patients, it should be applied with caution because this may lead to excessive tidal volume and lung injury. Trial registration protocols.io (Protocol integer ID 49375, April 23, 2021). 10.17504/protocols.io.buf7ntrn.


2021 ◽  
Author(s):  
Pavol Pobeha

Obesity is an increasingly prevalent disease and is a root and complication of conditions necessitating mechanical ventilation. Obese patients require a careful approach due to the particular manner of how ventilatory mechanics is affected, if obstructive sleep apnea (OSA) is present. The two main diagnoses we may encounter while ventilating these patients are obesity hypoventilation syndrome (OHS) and chronic obstructive pulmonary disease (COPD) in an obese patient, which has been recently proposed as a novel phenotype of COPD. The excessive amount of fat in the abdomen, chest wall, and around upper airways warrants the use of special ventilation modes and settings. This chapter provides insight into which issues should be considered when ventilating an obese patient, either in acute or chronic conditions. We stress the importance of acknowledging the high risk of OSA and how OSA affects the ventilation algorithms.


Sign in / Sign up

Export Citation Format

Share Document