predicted body weight
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 36)

H-INDEX

13
(FIVE YEARS 3)

Author(s):  
Yuri Isaka ◽  
Yasutaka Hirasawa ◽  
Jiro Terada ◽  
Yu Shionoya ◽  
Yuichiro Takeshita ◽  
...  

Circulation ◽  
2021 ◽  
Vol 144 (Suppl_2) ◽  
Author(s):  
Betty Y Yang ◽  
Jennifer E Blackwood ◽  
Jenny Shin ◽  
Sally Guan ◽  
Mengqi Gao ◽  
...  

Introduction: Respiratory mechanics, such as tidal volume and inspiratory pressures, affect outcome in hospitalized patients with respiratory failure. The ability to accurately measure respiratory mechanics in the prehospital setting is limited, thus the relationship between prehospital respiratory mechanics and clinical outcome is not well understood. In this feasibility study, we examined respiratory mechanics of bag-valve mask (BVM) ventilation by emergency medical services (EMS) using a novel in-line measuring device during a period when agencies switched from larger to smaller ventilation bags. Methods: This prospective cohort study included a convenience sample of adult patients who received BVM ventilation by EMS, from August 2018 to January 2020, in Bellevue, Washington. The airway monitoring device was applied by paramedics after intubation to passively record in black box mode, until termination of efforts or hospital arrival. Respiratory parameters included tidal volume, airway pressure, flow rates, end-tidal carbon dioxide, and respiratory rate. Prehospital agencies transitioned from large (1500 mL) to small (1000 mL) ventilation bags during the study period. Results: 7371 post-intubation breaths were measured in 54 patients, 32 treated for out-of-hospital cardiac arrest (OHCA) and 22 treated for non-arrest conditions, primarily respiratory etiology. EMS ventilated 19 patients with a small bag and 35 patients with a large bag. Ventilation with a smaller bag was characterized by less variability in tidal volumes and higher proportion of breaths delivered within 4-10 mL/kg of predicted body weight (Figure) (p<0.05). Conclusions: Respiratory mechanics can be measured in EMS patients receiving BVM ventilation following intubation. Ventilation with a smaller bag might reduce variation in tidal volume, but further study is needed. These data provide the first evaluation of respiratory mechanics during manual ventilation provided by EMS.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanhong Zhu ◽  
Wenyong Peng ◽  
Shuai Zhen ◽  
Xiaofeng Jiang

Abstract Background Mechanical power (MP), defined as the amount of energy produced by mechanical ventilation and released into the respiratory system, was reportedly a determining factor in the pathogenesis of ventilator-induced lung injury. However, previous studies suggest that the effects of MP were proportional to their involvement in the total lung function size. Therefore, MP normalized to the predicted body weight (norMP) should outperform the absolute MP value. The objective of this research is to determine the connection between norMP and mortality in critically ill patients who have been on invasive ventilation for at least 48 h. Methods This is a study of data stored in the databases of the MIMIC–III, which contains data of critically ill patients for over 50,000. The study involved critically ill patients who had been on invasive ventilation for at least 48 h. norMP was the relevant exposure. The major endpoint was ICU mortality, the secondary endpoints were 30-day, 90-day mortality; ICU length of stay, the number of ventilator-free days at day 28. Result The study involved a total of 1301 critically ill patients. This study revealed that norMP was correlated with ICU mortality [OR per quartile increase 1.33 (95% CI 1.16–1.52), p <  0.001]. Similarly, norMP was correlated with ventilator-free days at day 28, ICU length of stay. In the subgroup analysis, high norMP was associated with ICU mortality whether low or high Vt (OR 1.31, 95% CI 1.09–1.57, p = 0.004; OR 1.32, 95% CI 1.08–1.62, p = 0.008, respectively). But high norMP was associated with ICU mortality only in low PIP (OR 1.18, 95% CI 1.01–1.38, p = 0.034). Conclusion Our findings indicate that higher norMP is independently linked with elevated ICU mortality and various other clinical findings in critically ill patients with a minimum of 48 h of invasive ventilation.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
D F C Azevedo ◽  
R M Viera De Melo ◽  
A C Cunha ◽  
L G S Brito ◽  
T Viana ◽  
...  

Abstract Background It is known that in the immediate postoperative period of cardiac surgery, strict control of hemodynamic variables and blood volume is necessary, since there is an imbalance between oxygen supply and consumption. Thus, the present study seeks to validate methods previously used in different clinical situations to predict fluid responsiveness, in the current scenario of the immediate postoperative period of cardiac surgery. Purpose To evaluate the influence of “tidal volume challenge” from 6 ml / kg to 8 ml / kg of the predicted body weight (PBW) in conjunction with the end expiratory occlusion test (EEOT) in the variation of pulse pressure to predict fluid responsiveness in the immediate postoperative period of cardiac surgery. Methodology This prospective study included 30 patients after cardiac surgery. Hemodynamic and ventilatory parameters were initially recorded in mechanical ventilation at 6 ml/kg and after tidial volume challenge and with the EEOT at 8 ml/kg of predicted body weight (PBW). After recorded the intervention data, there was a return to ventilation at 6 ml/kg and a saline infusion of 500 ml was performed for 15 minutes. Fluid responsiveness was defined for patients who had an increase of 10% or more in velocity time integral (VTI) by echocardiogram after volume expansion compared to baseline value. Multivariate analysis was used to identify independent predictors of fluid response status. Sensitivity and specificity analyzes were performed to determine the predictive precision of each parameter. Results The main result of our study is that, when the tidal volume is increased from 6 to 8 ml/kg of PBW, the relative increase in pulse pressure variation (%ΔPPV6–8) predicts with excellent accuracy responsiveness to fluids with cut-off values of 18.3%, with sensitivity of 92.9% and specificity of 84% (P=0.019). Although changing PPV6, EEOT6 and EEOT8 are not reliable in predicting fluid responsiveness, they still require additional calculations. PPV8 also discriminates between responders and non-responders; however, with sensitivity (78.6%) and specificity (66.6%) when the value found in the PPV8 is up 8.5, but without statistical significance (figure). Conclusion The challenge of tidal volume and its influence on the ΔPP variation has excellent accuracy to predict fluid responsiveness in the immediate postoperative period of cardiac surgery. EEOT did not present good accuracy to predict fluid responsiveness in patients in the immediate postoperative period of cardiac surgery. FUNDunding Acknowledgement Type of funding sources: None.


2021 ◽  
Vol 6 (3) ◽  
pp. 196-200
Author(s):  
Manju Mathew ◽  
Antony Kalliath ◽  
Benju S Varghese ◽  
Alex Mathew

Air leak syndrome manifesting as pneumomediastinum (PM), pneumothorax (PNX) or subcutaneous emphysema (SCE) has been reported in COVID-19 patients with increasing frequency and with varying outcomes. We report a series of eight cases of PM or SCE from 1 April to May 31, 2021, among COVID-19 patients admitted in our ICU. All the patients had severe hypoxemia (PaO2/FiO2 ratio ≤100) and were on noninvasive ventilation when the air leak was detected except one. PM/SCE was observed mostly on the 3 to 5 day after instituting positive pressure ventilation. High respiratory drive with mean tidal volumes in the range of 6 to 10ml/kg predicted body weight was observed in these patients. Mean inspiratory pressure (Pressure support + positive end expiratory pressure) and mean positive end expiratory pressure delivered by the ventilator ranged between 11 to 21 and 5 to 12 cm HO respectively. Outcomes varied with four deaths, four patients requiring intubation, two patients requiring chest drainage and four patients showing overall improvement out of the total eight patients with air leak.1.Air leak syndrome is not rare in COVID-19 with reported incidence of 10-14%; 2. Spontaneous noninvasive ventilation in patients with high respiratory drive and large fluctuations in tidal volumes seems to be a risk factor for air leak in patients with severe lung involvement; 3. A conservative approach without intercostal drainage seems to be acceptable in the absence of pneumothorax; 4. Prognosis is varied depending on the underlying disease and not always catastrophic.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255812
Author(s):  
Robert A. Raschke ◽  
Brenda Stoffer ◽  
Seth Assar ◽  
Stephanie Fountain ◽  
Kurt Olsen ◽  
...  

Purpose To determine whether tidal volume/predicted body weight (TV/PBW) or driving pressure (DP) are associated with mortality in a heterogeneous population of hypoxic mechanically ventilated patients. Methods A retrospective cohort study involving 18 intensive care units included consecutive patients ≥18 years old, receiving mechanical ventilation for ≥3 days, with a PaO2/FiO2 ratio ≤300 mmHg, whether or not they met full criteria for ARDS. The main outcome was hospital mortality. Multiple logistic regression (MLR) incorporated TV/PBW, DP, and potential confounders including age, APACHE IVa® predicted hospital mortality, respiratory system compliance (CRS), and PaO2/FiO2. Predetermined strata of TV/PBW were compared using MLR. Results Our cohort comprised 5,167 patients with mean age 61.9 years, APACHE IVa® score 79.3, PaO2/FiO2 166 mmHg and CRS 40.5 ml/cm H2O. Regression analysis revealed that patients receiving DP one standard deviation above the mean or higher (≥19 cmH20) had an adjusted odds ratio for mortality (ORmort) = 1.10 (95% CI: 1.06–1.13, p = 0.009). Regression analysis showed a U-shaped relationship between strata of TV/PBW and adjusted mortality. Using TV/PBW 4–6 ml/kg as the referent group, patients receiving >10 ml/kg had similar adjusted ORmort, but those receiving 6–7, 7–8 and 8–10 ml/kg had lower adjusted ORmort (95%CI) of 0.81 (0.65–1.00), 0.78 (0.63–0.97) and 0.80 0.67–1.01) respectively. The adjusted ORmort in patients receiving 4–6 ml/kg was 1.26 (95%CI: 1.04–1.52) compared to patients receiving 6–10 ml/kg. Conclusions Driving pressures ≥19 cmH2O were associated with increased adjusted mortality. TV/PBW 4-6ml/kg were used in less than 15% of patients and associated with increased adjusted mortality compared to TV/PBW 6–10 ml/kg used in 82% of patients. Prospective clinical trials are needed to prove whether limiting DP or the use of TV/PBW 6–10 ml/kg versus 4–6 ml/kg benefits mortality.


Author(s):  
Simon Orlob ◽  
Johannes Wittig ◽  
Christoph Hobisch ◽  
Daniel Auinger ◽  
Gabriel Honnef ◽  
...  

Abstract Background Previous studies have stated that hyperventilation often occurs in cardiopulmonary resuscitation (CPR) mainly due to excessive ventilation frequencies, especially when a manual valve bag is used. Transport ventilators may provide mandatory ventilation with predetermined tidal volumes and without the risk of hyperventilation. Nonetheless, interactions between chest compressions and ventilations are likely to occur. We investigated whether transport ventilators can provide adequate alveolar ventilation during continuous chest compression in adult CPR. Methods A three-period crossover study with three common transport ventilators in a cadaver model of CPR was carried out. The three ventilators ‘MEDUMAT Standard²’, ‘Oxylog 3000 plus’, and ‘Monnal T60’ represent three different interventions, providing volume-controlled continuous mandatory ventilation (VC-CMV) via an endotracheal tube with a tidal volume of 6 mL/kg predicted body weight. Proximal airflow was measured, and the net tidal volume was derived for each respiratory cycle. The deviation from the predetermined tidal volume was calculated and analysed. Several mixed linear models were calculated with the cadaver as a random factor and ventilator, height, sex, crossover period and incremental number of each ventilation within the period as covariates to evaluate differences between ventilators. Results Overall median deviation of net tidal volume from predetermined tidal volume was − 21.2 % (IQR: 19.6, range: [− 87.9 %; 25.8 %]) corresponding to a tidal volume of 4.75 mL/kg predicted body weight (IQR: 1.2, range: [0.7; 7.6]). In a mixed linear model, the ventilator model, the crossover period, and the cadaver’s height were significant factors for decreased tidal volume. The estimated effects of tidal volume deviation for each ventilator were − 14.5 % [95 %-CI: −22.5; −6.5] (p = 0.0004) for ‘Monnal T60’, − 30.6 % [95 %-CI: −38.6; −22.6] (p < 0.0001) for ‘Oxylog 3000 plus’ and − 31.0 % [95 %-CI: −38.9; −23.0] (p < 0.0001) for ‘MEDUMAT Standard²’. Conclusions All investigated transport ventilators were able to provide alveolar ventilation even though chest compressions considerably decreased tidal volumes. Our results support the concept of using ventilators to avoid excessive ventilatory rates in CPR. This experimental study suggests that healthcare professionals should carefully monitor actual tidal volumes to recognise the occurrence of hypoventilation during continuous chest compressions.


Author(s):  
M D MacNeil ◽  
D P Berry ◽  
S A Clark ◽  
J J Crowley ◽  
M M Scholtz

Abstract Information on body weight and average daily gain (ADG) of growing animals is key not only to monitoring performance, but also for use in genetic evaluations in the pursuit of achieving sustainable genetic gain. Accurate calculation of ADG, however, requires serial measures of body weight over at least 70 days. This can be resource intensive and thus alternative approaches to predicting individual animal ADG warrant investigation. One such approach is the use of continuously collected individual animal partial body weights. The objective of the present study was to determine the utility of partial body weights in predicting both body weight and ADG; a secondary objective was to deduce the appropriate length of test to determine ADG from partial body weight records. The dataset used consisted of partial body weights, predicted body weights and recorded body weights recorded for 8,972 growing cattle from a range of different breed types in 35 contemporary groups. The relationships among partial body weight, predicted body weight and recorded body weight at the beginning and end of the performance test were determined and calculated ADG per animal from each body weight measure were also compared. On average, partial body weight explained 90.7 ± 2.0% of the variation in recorded body weight at the beginning of the postweaning gain test and 87.9 ± 2.9% of the variation in recorded body weight at its end. The GrowSafe proprietary algorithm to predict body weight from the partial body weight strengthened these coefficients of determination to 95.1 ± 0.9% and 94.9 ± 0.8%, respectively. The ADG calculated from the partial body weight or from the predicted body weight were very strongly correlated (r = 0.95); correlations between these ADG values with those calculated from the recorded body weights were weaker at 0.81 and 0.78, respectively. For some applications, ADG may be measured with sufficient accuracy with a test period of 50 days using partial body weights. The intended inference space is to individual trials which have been represented in this study by contemporary groups of growing cattle from different genotypes.


2021 ◽  
pp. 088506662110308
Author(s):  
Omar Mahmoud ◽  
Deep Patadia ◽  
James Salonia

Background: Airway Pressure Release Ventilation (APRV) is a pressure controlled intermittent mandatory mode of ventilation characterized by prolonged inspiratory time and high mean airway pressure. Several studies have demonstrated that APRV can improve oxygenation and lung recruitment in patients with Acute Respiratory Distress Syndrome (ARDS). Although most patients with COVID-19 meet the Berlin criteria for ARDS, hypoxic respiratory failure due to COVID-19 may differ from traditional ARDS as patients often present with severe, refractory hypoxemia and significant variation in respiratory system compliance. To date, no studies investigating APRV in this patient population have been published. The aim of this study was to evaluate the effectiveness of APRV as a rescue mode of ventilation in critically ill patients diagnosed with COVID-19 and refractory hypoxemia. Methods: We conducted a retrospective analysis of patients admitted with COVID-19 requiring invasive mechanical ventilation who were treated with a trial of APRV for refractory hypoxemia. PaO2/FIO2 (P/F ratio), ventilatory ratio and ventilation outputs before and during APRV were compared. Results: APRV significantly improved the P/F ratio and decreased FIO2 requirements. PaCO2 and ventilatory ratio were also improved. There was an increase in tidal volume per predicted body weight during APRV and a decrease in total minute ventilation. On multivariate analysis, higher inspiratory to expiratory ratio (I: E) and airway pressure were associated with greater improvement in P/F ratio. Conclusions: APRV may improve oxygenation, alveolar ventilation and CO2 clearance in patients with COVID-19 and refractory hypoxemia. These effects are more pronounced with higher airway pressure and inspiratory time.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tobias Becher ◽  
Valerie Buchholz ◽  
Daniel Hassel ◽  
Timo Meinel ◽  
Dirk Schädler ◽  
...  

Abstract Background In mechanically ventilated patients with acute respiratory distress syndrome (ARDS), electrical impedance tomography (EIT) provides information on alveolar cycling and overdistension as well as assessment of recruitability at the bedside. We developed a protocol for individualization of positive end-expiratory pressure (PEEP) and tidal volume (VT) utilizing EIT-derived information on recruitability, overdistension and alveolar cycling. The aim of this study was to assess whether the EIT-based protocol allows individualization of ventilator settings without causing lung overdistension, and to evaluate its effects on respiratory system compliance, oxygenation and alveolar cycling. Methods 20 patients with ARDS were included. Initially, patients were ventilated according to the recommendations of the ARDS Network with a VT of 6 ml per kg predicted body weight and PEEP adjusted according to the lower PEEP/FiO2 table. Subsequently, ventilator settings were adjusted according to the EIT-based protocol once every 30 min for a duration of 4 h. To assess global overdistension, we determined whether lung stress and strain remained below 27 mbar and 2.0, respectively. Results Prospective optimization of mechanical ventilation with EIT led to higher PEEP levels (16.5 [14–18] mbar vs. 10 [8–10] mbar before optimization; p = 0.0001) and similar VT (5.7 ± 0.92 ml/kg vs. 5.8 ± 0.47 ml/kg before optimization; p = 0.96). Global lung stress remained below 27 mbar in all patients and global strain below 2.0 in 19 out of 20 patients. Compliance remained similar, while oxygenation was significantly improved and alveolar cycling was reduced after EIT-based optimization. Conclusions Adjustment of PEEP and VT using the EIT-based protocol led to individualization of ventilator settings with improved oxygenation and reduced alveolar cycling without promoting global overdistension. Trial registrationThis study was registered at clinicaltrials.gov (NCT02703012) on March 9, 2016 before including the first patient.


Sign in / Sign up

Export Citation Format

Share Document