The relative lengthening of the myotendinous structures in the medial gastrocnemius during passive stretching differs among individuals

2009 ◽  
Vol 106 (1) ◽  
pp. 169-177 ◽  
Author(s):  
Séverine Abellaneda ◽  
Nathalie Guissard ◽  
Jacques Duchateau

The increase in passive torque during muscle stretching may constrain the range of motion of a joint. As passive torque can vary substantially among individuals, the present study examined whether the relative lengthening of the myotendinous structures of the medial gastrocnemius (MG) during passive stretching differs among individuals. Sixteen subjects performed passive stretching of the plantar flexor muscles from ankle angles ranging from 10° plantar flexion (−10°) to 30° dorsiflexion (+30°). Changes in passive torque, muscle architecture (fascicle length and pennation angle) of the MG and electromyographic activity of MG and soleus were recorded. The results showed that passive torque produced by the plantar flexors increased exponentially ( r2 = 0.99; P < 0.001) with ankle dorsiflexion, whereas MG fascicle length increased linearly from 57.6 ± 9.1 to 80.5 ± 10.3 mm ( P < 0.001), and pennation angle decreased linearly from 21.2 ± 4.2 to 14.4 ± 3.1° ( P < 0.001) when the ankle joint angle was moved from −10° to +30°. The relative contribution of muscle (fascicles and aponeuroses) and tendon elongation to the change in length of the muscle-tendon unit (MTU) at 30° dorsiflexion was 71.8 and 28.2%, respectively. However, the adjustment differed across individuals during MTU lengthening; in subjects (62.5%) with small, passive stiffness, the elongation of the free tendon was less and that of the fascicles larger than for subjects (37.5%) with greater stiffness. In conclusion, the results indicate that the strain of muscle and tendon varies among individuals, and difference in the relative compliance of these structures influences MTU lengthening differently during passive stretching.

2015 ◽  
Vol 118 (10) ◽  
pp. 1193-1199 ◽  
Author(s):  
Brent J. Raiteri ◽  
Andrew G. Cresswell ◽  
Glen A. Lichtwark

Because of the approximate linear relationship between muscle force and muscle activity, muscle forces are often estimated during maximal voluntary isometric contractions (MVICs) from torque and surface electromyography (sEMG) measurements. However, sEMG recordings from a target muscle may contain cross-talk originating from nearby muscles, which could lead to erroneous force estimates. Here we used ultrasound imaging to measure in vivo muscle fascicle length ( Lf) changes and sEMG to measure muscle activity of the tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and soleus muscles during ramp MVICs in plantar and dorsiflexion directions ( n = 8). After correcting longitudinal Lfchanges for ankle rotation, the antagonist Lfat peak antagonist root-mean-square (RMS) amplitude were significantly longer than the agonist Lfat this sEMG-matched level. On average, Lfshortened from resting length by 1.29 to 2.90 mm when muscles acted as agonists and lengthened from resting length by 0.43 to 1.16 mm when muscles acted as antagonists (depending on the muscle of interest). The lack of fascicle shortening when muscles acted as antagonists indicates that cocontraction was likely to be negligible, despite cocontraction as determined by sEMG of between 7 and 23% MVIC across all muscles. Different interelectrode distances (IEDs) over the plantar flexors revealed significantly higher antagonist RMS amplitudes for the 4-cm IEDs compared with the 2-cm IEDs, which further indicates that cross-talk was present. Consequently, investigators should be wary about performing agonist torque corrections for isometric plantar flexion and dorsiflexion based on the antagonist sEMG trace and predicted antagonist moment.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
John W. Ramsay ◽  
Thomas S. Buchanan ◽  
Jill S. Higginson

Poststroke plantar flexor muscle weakness has been attributed to muscle atrophy and impaired activation, which cannot collectively explain the limitations in force-generating capability of the entire muscle group. It is of interest whether changes in poststroke plantar flexor muscle fascicle length and pennation angle influence the individual force-generating capability and whether plantar flexor weakness is due to uniform changes in individual muscle force contributions. Fascicle lengths and pennation angles for the soleus, medial, and lateral gastrocnemius were measured using ultrasound and compared between ten hemiparetic poststroke subjects and ten healthy controls. Physiological cross-sectional areas and force contributions to poststroke plantar flexor torque were estimated for each muscle. No statistical differences were observed for any muscle fascicle lengths or for the lateral gastrocnemius and soleus pennation angles between paretic, nonparetic, and healthy limbs. There was a significant decrease (P<0.05) in the paretic medial gastrocnemius pennation angle compared to both nonparetic and healthy limbs. Physiological cross-sectional areas and force contributions were smaller on the paretic side. Additionally, bilateral muscle contributions to plantar flexor torque remained the same. While the architecture of each individual plantar flexor muscle is affected differently after stroke, the relative contribution of each muscle remains the same.


2018 ◽  
Vol 34 (3) ◽  
pp. 169-174 ◽  
Author(s):  
Kentaro Chino ◽  
Hideyuki Takahashi

Passive ankle joint stiffness is affected by all structures located within and over the joint, and is greater in men than in women. Localized muscle stiffness can be assessed by ultrasound shear wave elastography, and muscle architecture such as fascicle length and pennation angle can be measured by B-mode ultrasonography. Thus, the authors assessed localized muscle stiffness of the medial gastrocnemius (MG) with consideration of individual variability in the muscle architecture, and examined the association of the muscle stiffness with passive ankle joint stiffness and the sex-related difference in the joint stiffness. Localized muscle stiffness of the MG in 16 men and 17 women was assessed at 10° and 20° plantar flexion, neutral anatomical position, and 10° and 20° dorsiflexion. Fascicle length and pennation angle of the MG were measured at these joint positions. Passive ankle joint stiffness was determined by the ankle joint angle–torque relationship. Localized MG muscle stiffness was not significantly correlated with passive ankle joint stiffness, and did not show significant sex-related difference, even when considering the muscle architecture. This finding suggests that muscle stiffness of the MG would not be a prominent factor in determining passive ankle joint stiffness and the sex-related difference in the joint stiffness.


2010 ◽  
Vol 22 (1) ◽  
pp. 152-164 ◽  
Author(s):  
Theodoros Kannas ◽  
Eleftherios Kellis ◽  
Fotini Arampatzi ◽  
Eduardo Saez Saez de Villarreal

The aim of this study was to examine the differences in muscle architecture during isometric tests between children and adults. Eight boys (age= 11.2 ± 0.26 years) and eight men (age= 22.3 ± 2.01 years) performed plantar flexion isometric efforts at angles of -15°, 0°, 15° at 0%, 40%, 60%, 80% of MVC. Analysis of variance tests indicated that adults showed greater fascicle length from rest to 80% of MVC (p < .05), greater pennation angle at 80% and 100% of MVC (p < .05) and greater aponeuroses displacement at levels of effort greater than 60% of MVC (p < .05). These differences observed in MG would appear to favor better utilization of the force-length and the force-velocity relationships, of the muscle in adults compared with children.


Author(s):  
Georgios Trypidakis ◽  
Ioannis G. Amiridis ◽  
Roger Enoka ◽  
Irini Tsatsaki ◽  
Eleftherios Kellis ◽  
...  

AbstractThe purpose of the study was to evaluate the influence of changes in ankle- and knee-joint angles on force steadiness and the discharge characteristics of motor units (MU) in soleus when the plantar flexors performed steady isometric contractions. Submaximal contractions (5, 10, 20, and 40% of maximum) were performed at two ankle angles (75° and 105°) and two knee angles (120° and 180°) by 14 young adults. The coefficient of variation of force decreased as the target force increased from 5 to 20% of maximal force, then remained unaltered at 40%. Independently of knee angle, the coefficient of variation for force at the ankle angle of 75° (long length) was always less (p<0.05) than that at 105° (shorter length). Mean discharge rate, discharge variability, and variability in neural activation of soleus motor units were less (p<0.05) at the 75° angle than at 105°. It was not possible to record MUs from medial gastrocnemius at the knee angle of 120° due to its minimal activation. The changes in knee-joint angle did not influence any of the outcome measures. The findings underscore the dominant role of the soleus muscle in the control of submaximal forces produced by the plantar flexor muscles.


2014 ◽  
Vol 7 (6) ◽  
pp. 460-465 ◽  
Author(s):  
Matthew T. Crill ◽  
Gregory Berlet ◽  
Christopher Hyer

Eccentric training for Achilles tendinosis (AT) has been reported to significantly improve patient symptoms. There has been no biomechanical explanation on the mechanism for specific rehabilitation technique. The purpose of this study was to determine changes in muscle architecture that occurred as a result of Achilles tendinosis injury and a subsequent eccentric rehabilitation program. Twenty-five patients (age, 53.3 ± 17.5 years) diagnosed with AT participated in 6 weeks of rehabilitation. Specific exercises for the ankle plantar flexors consisted of maximal load eccentric muscle action using 3 sets of 15 repetitions. Patients also completed a protocol for AT, which consisting of traditional rehabilitation. Medial gastrocnemius (GM) and lateral gastrocnemius (GL) muscle fascicle length and thickness were measured with ultrasound at 2-week intervals from initial treatment day to the end of 6 weeks of rehabilitation. Medial gastrocnemius fascicle length increased (45.1 ± 10.5 mm to 51.4 ± 10.5 mm; P = .22) between the initial day of rehabilitation and after 6 weeks of rehabilitation. But, GM thickness (16.3 ± 3.5 mm to 16.8 ± 2.0 mm), GL fascicle length (47.2 ± 10.0 mm to 47.1 ± 7.4 mm), and GL thickness (14.9 ± 5.2 mm to 14.4 ± 2.7 mm) did not change as a result of rehabilitation. A 6-week eccentric-biased exercise increased the GM muscle fascicle length by 12%, but GM thickness, GL fascicle length, and GL thickness did not change as a result of rehabilitation. Eccentric training for the treatment of AT is well recognized, but the mechanism of action has not been previously reported. A 6-week eccentric training protocol increased the GM muscle fascicle length by 12%, and this correlated with improvement in a validated patient outcome scoring system. Further study is warranted to determine a predictive relationship between improvement of GM fascicle length and outcome scores. Levels of Evidence: Therapeutic, Level IV: Case series


2019 ◽  
Vol 33 (4) ◽  
pp. 245-259 ◽  
Author(s):  
Maud Pradines ◽  
Mouna Ghedira ◽  
Raphaël Portero ◽  
Ingrid Masson ◽  
Christina Marciniak ◽  
...  

Introduction. The effects of long-term stretching (>6 months) in hemiparesis are unknown. This prospective, randomized, single-blind controlled trial compared changes in architectural and clinical parameters in plantar flexors of individuals with chronic hemiparesis following a 1-year guided self-stretch program, compared with conventional rehabilitation alone. Methods. Adults with chronic stroke-induced hemiparesis (time since lesion >1 year) were randomized into 1 of 2, 1-year rehabilitation programs: conventional therapy (CONV) supplemented with the Guided Self-rehabilitation Contract (GSC) program, or CONV alone. In the GSC group, specific lower limb muscles, including plantar flexors, were identified for a diary-based treatment utilizing daily, high-load, home self-stretching. Blinded assessments included (1) ultrasonographic measurements of soleus and medial gastrocnemius (MG) fascicle length and thickness, with change in soleus fascicle length as primary outcome; (2) maximum passive muscle extensibility (XV1, Tardieu Scale); (3) 10-m maximal barefoot ambulation speed. Results. In all, 23 individuals (10 women; mean age [SD], 56 [±12] years; time since lesion, 9 [±8] years) were randomized into either the CONV (n = 11) or GSC (n = 12) group. After 1 year, all significant between-group differences favored the GSC group: soleus fascicle length, +18.1mm [9.3; 29.9]; MG fascicle length, +6.3mm [3.5; 9.1]; soleus thickness, +4.8mm [3.0; 7.7]; XV1 soleus, +4.1° [3.1; 7.2]; XV1 gastrocnemius, +7.0° [2.1; 11.9]; and ambulation speed, +0.07m/s [+0.02; +0.16]. Conclusions. In chronic hemiparesis, daily self-stretch of the soleus and gastrocnemius over 1 year using GSC combined with conventional rehabilitation increased muscle fascicle length, extensibility, and ambulation speed more than conventional rehabilitation alone.


2002 ◽  
Vol 92 (2) ◽  
pp. 595-601 ◽  
Author(s):  
Keitaro Kubo ◽  
Hiroaki Kanehisa ◽  
Tetsuo Fukunaga

The purpose of this study was to examine whether stretching training altered the viscoelastic properties of human tendon structures in vivo. Eight men performed the stretching training for 3 wk. Before and after the stretching training, the elongation of the tendon and aponeurosis of medial gastrocnemius muscle was directly measured by ultrasonography while the subjects performed ramp isometric plantar flexion up to the voluntary maximum, followed by a ramp relaxation. The relationship between the estimated muscle force (Fm) and tendon elongation ( L) during the ascending phase was fitted to a linear regression, the slope of which was defined as stiffness of tendon structures. The percentage of the area within the Fm- L loop to the area beneath the curve during ascending phase was calculated as an index representing hysteresis. To assess the flexibility, the passive torque of the plantar flexor muscles was measured during the passive stretch from 0° (anatomic position) to 25° of dorsiflexion with a constant velocity of 5°/s. The slope of the linear portion of the passive torque-angle curve during stretching was defined as flexibility index. Flexibility index decreased significantly after stretching training (−13.4 ± 4.6%). On the other hand, the stretching training produced no significant change in stiffness but significantly decreased hysteresis from 19.9 ± 11.7 to 12.5 ± 9.5%. The present results suggested that stretching training affected the viscosity of tendon structures but not the elasticity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Masatoshi Nakamura ◽  
Andreas Konrad ◽  
Ryosuke Kiyono ◽  
Shigeru Sato ◽  
Kaoru Yahata ◽  
...  

In sports and clinical settings, roller massage (RM) interventions are used to acutely increase range of motion (ROM); however, the underlying mechanisms are unclear. Apart from changes in soft tissue properties (i.e., reduced passive stiffness), neurophysiological alterations such as decreased spinal excitability have been described. However, to date, no study has investigated both jointly. The purpose of this trial was to examine RM’s effects on neurophysiological markers and passive tissue properties of the plantar flexors in the treated (ROLL) and non-treated (NO-ROLL) leg. Fifteen healthy individuals (23 ± 3 years, eight females) performed three unilateral 60-s bouts of calf RM. This procedure was repeated four times on separate days to allow independent assessments of the following outcomes without reciprocal interactions: dorsiflexion ROM, passive torque during passive dorsiflexion, shear elastic modulus of the medial gastrocnemius muscle, and spinal excitability. Following RM, dorsiflexion ROM increased in both ROLL (+19.7%) and NO-ROLL (+13.9%). Similarly, also passive torque at dorsiflexion ROM increased in ROLL (+15.0%) and NO-ROLL (+15.2%). However, there were no significant changes in shear elastic modulus and spinal excitability (p &gt; 0.05). Moreover, significant correlations were observed between the changes in DF ROM and passive torque at DF ROM in both ROLL and NO-ROLL. Changes in ROM after RM appear to be the result of sensory changes (e.g., passive torque at DF ROM), affecting both rolled and non-rolled body regions. Thus, therapists and exercise professionals may consider applying remote treatments if local loading is contraindicated.


2019 ◽  
Author(s):  
Todd J. Hullfish ◽  
Kathryn M. O’Connor ◽  
Josh R. Baxter

ABSTRACTPlantarflexor functional deficits are associated with poor outcomes in patients following Achilles tendon rupture. In this longitudinal study, we analyzed the fascicle length and pennation angle of the medial gastrocnemius muscle and the length of the Achilles tendon using ultrasound imaging. To determine the relationship between muscle remodeling and functional deficits measured at 3 months after injury, we correlated the reduction in fascicle length and increase in pennation angle with peak torque measured during isometric plantarflexor contractions and peak power measured during isokinetic plantarflexor contractions. We found that the medial gastrocnemius underwent an immediate change in structure, characterized by decreased length and increased pennation of the muscle fascicles. This decrease in fascicle length was coupled with an increase in tendon length. These changes in muscle-tendon structure persisted throughout the first three months following rupture. Deficits in peak plantarflexor power were moderately correlated with decreased fascicle length at 120 degrees per second (R2= 0.424,P= 0.057) and strongly correlated with decreased fascicle length at 210 degrees per second (R2= 0.737,P= 0.003). However, increases in pennation angle did not explain functional deficits. These findings suggest that muscle-tendon structure is detrimentally affected following Achilles tendon rupture. Plantarflexor power deficits are positively correlated with the magnitude of reductions in fascicle length. Preserving muscle structure following Achilles tendon rupture should be a clinical priority to maintain patient function.


Sign in / Sign up

Export Citation Format

Share Document