scholarly journals Context-dependent tactile texture-sensitivity in monkey M1 and S1 cortex

2018 ◽  
Vol 120 (5) ◽  
pp. 2334-2350 ◽  
Author(s):  
Wan Jiang ◽  
François Tremblay ◽  
C. Elaine Chapman

Caudal primary motor cortex (M1, area 4) is sensitive to cutaneous inputs, but the extent to which the physical details of complex stimuli are encoded is not known. We investigated the sensitivity of M1 neurons (4 Macaca mulatta monkeys) to textured stimuli (smooth/rough or rough/rougher) during the performance of a texture discrimination task and, for some cells, during a no-task condition (same surfaces; no response). The recordings were made from the hemisphere contralateral to the stimulated digits; the motor response (sensory decision) was made with the nonstimulated arm. Most M1 cells were modulated during surface scanning in the task (88%), but few of these were texture-related (24%). In contrast, 44% of M1 neurons were texture related in the no-task condition. Recordings from the neighboring primary somatosensory cortex (S1), the potential source of texture-related signals to M1, showed that S1 neurons were significantly more likely to be texture related during the task (57 vs 24%) than M1. No difference was observed in the no-task condition (52 vs. 44%). In these recordings, the details about surface texture were relevant for S1 but not for M1. We suggest that tactile inputs to M1 were selectively suppressed when the animals were engaged in the task. S1 was spared these controls, as the same inputs were task-relevant. Taken together, we suggest that the suppressive effects are most likely exerted directly at the level of M1, possibly through the activation of a top-down gating mechanism specific to motor set/intention. NEW & NOTEWORTHY Sensory feedback is important for motor control, but we have little knowledge of the contribution of sensory inputs to M1 discharge during behavior. We showed that M1 neurons signal changes in tactile texture, but mainly outside the context of a texture discrimination task. Tactile inputs to M1 were selectively suppressed during the task because this input was not relevant for the recorded hemisphere, which played no role in generating the discrimination response.

2015 ◽  
Vol 16 (S1) ◽  
Author(s):  
John WG Seamons ◽  
Marconi S Barbosa ◽  
Jonathan D Victor ◽  
Dominique Coy ◽  
Ted Maddess

Soft Robotics ◽  
2020 ◽  
Author(s):  
Sriramana Sankar ◽  
Darshini Balamurugan ◽  
Alisa Brown ◽  
Keqin Ding ◽  
Xingyuan Xu ◽  
...  

2008 ◽  
Vol 20 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Bernhard Pastötter ◽  
Simon Hanslmayr ◽  
Karl-Heinz Bäuml

In the orienting of attention paradigm, inhibition of return (IOR) refers to slowed responses to targets presented at the same location as a preceding stimulus. No consensus has yet been reached regarding the stages of information processing underlying the inhibition. We report the results of an electro-encephalogram experiment designed to examine the involvement of response inhibition in IOR. Using a cue-target design and a target-target design, we addressed the role of response inhibition in a location discrimination task. Event-related changes in beta power were measured because oscillatory beta activity has been shown to be related to motor activity. Bilaterally located sources in the primary motor cortex showed event-related beta desynchronization (ERD) both at cue and target presentation and a rebound to event-related beta synchronization (ERS) after movement execution. In both designs, IOR arose from an enhancement of beta synchrony. IOR was related to an increase of beta ERS in the target-target design and to a decrease of beta ERD in the cue-target design. These results suggest an important role of response inhibition in IOR.


2014 ◽  
Vol 14 (10) ◽  
pp. 951-951 ◽  
Author(s):  
M. Machizawa ◽  
R. Patey ◽  
D. Kim ◽  
T. Watanabe

Author(s):  
Hugo Merchant ◽  
Apostolos P. Georgopoulos

Inhibitory mechanisms are crucial for the integrated operation of the motor cortical circuit. Local inhibition is exerted by interneurons that are GABAergic, nonpyramidal cells with short, nonprojecting axons. Interneurons can be classified into at least two groups: fast-spiking (FS) neurons and instrinsic bursting (IB) neurons. In the primary motor cortex, FS cells may sculpe the tuning dispersion of directionally selective putative pyramidal cells during reaching in behaving monkeys. Analysis of putative interneuronal activity also allowed to discard the role of inhibition as a gating mechanism in motor control. The development of high-density, semichronic electrode systems for extracellular recordings in behaving primates will allow a closer investigation of the role of interneuronal inhibition in directional tuning and voluntary motor control. The results discussed in this chapter agree with the authors’ proposal that local inhibitory mechanisms may be intimately involved in controlling the directional accuracy and speed of the reaching movement.


2017 ◽  
Vol 118 (3) ◽  
pp. 1828-1848 ◽  
Author(s):  
Mohsen Omrani ◽  
Matthew T. Kaufman ◽  
Nicholas G. Hatsopoulos ◽  
Paul D. Cheney

Primary motor cortex has been studied for more than a century, yet a consensus on its functional contribution to movement control is still out of reach. In particular, there remains controversy as to the level of control produced by motor cortex (“low-level” movement dynamics vs. “high-level” movement kinematics) and the role of sensory feedback. In this review, we present different perspectives on the two following questions: What does activity in motor cortex reflect? and How do planned motor commands interact with incoming sensory feedback during movement? The four authors each present their independent views on how they think the primary motor cortex (M1) controls movement. At the end, we present a dialogue in which the authors synthesize their views and suggest possibilities for moving the field forward. While there is not yet a consensus on the role of M1 or sensory feedback in the control of upper limb movements, such dialogues are essential to take us closer to one.


2021 ◽  
Author(s):  
Kevin Patrick Cross ◽  
Douglas J Cook ◽  
Stephen H Scott

An important aspect of motor function is our ability to rapidly generate goal-directed corrections for disturbances to the limb or behavioural goal. Primary motor cortex (M1) is a key region involved in feedback processing, yet we know little about how different sources of feedback are processed by M1. We examined feedback-related activity in M1 to compare how different sources (visual versus proprioceptive) and types of information (limb versus goal) are represented. We found sensory feedback had a broad influence on M1 activity with ~73% of neurons responding to at least one of the feedback sources. Information was also organized such that limb and goal feedback targeted the same neurons and evoked similar responses at the single-neuron and population levels indicating a strong convergence of feedback sources in M1.


Sign in / Sign up

Export Citation Format

Share Document