movement execution
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 39)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Qinpu He ◽  
Christopher S Versteeg ◽  
Aneesha K Suresh ◽  
Lee E Miller ◽  
Sliman J Bensmaia

To achieve stable and precise movement execution, the sensorimotor system integrates exafferent sensory signals originating from interactions with the external world and reafferent signals caused by our own movements. This barrage of sensory information is regulated such that behaviorally relevant signals are boosted at the expense of irrelevant ones. For example, sensitivity to touch is reduced during movement - when cutaneous signals caused by skin stretch are expected and uninteresting - a phenomenon reflected in a decreased cutaneous responsiveness in thalamus and cortex. Some evidence suggests that movement gating of touch may originate from the cuneate nucleus (CN), the first recipient of signals from tactile nerve fibers along the dorsal columns medial lemniscal pathway. To test this possibility, we intermittently delivered mechanical pulses to the receptive fields (RFs) of identified cutaneous CN neurons as monkeys performed a reach-to-grasp task. As predicted, we found that the cutaneous responses of individual CN neurons were reduced during movement. However, this movement gating of cutaneous signals was observed for CN neurons with RFs on the arm but not those with RFs on the hand. We conclude that sensory gating occurs in the first processing stage along the somatosensory neuraxis and sculpts incoming signals according to their task relevance.


2021 ◽  
Author(s):  
Elisa Tatti ◽  
Francesca Ferraioli ◽  
Alberto Cacciola ◽  
Cameron Chan ◽  
Angelo Quartarone ◽  
...  

Voluntary movements are accompanied by increased oscillatory activity or synchronization in the gamma range (> 25.5 Hz) within the sensorimotor system. Despite the extensive literature about movement-related gamma synchronization, the specific role of gamma oscillations for movement control is still debated. In this study, we characterized movement-related gamma oscillatory dynamics and its relationship with movement characteristics based on 256-channels EEG recordings in 64 healthy subjects while performing fast and uncorrected reaching movements to targets located at three distances. We found that movement-related gamma synchronization occurred during both movement planning and execution, albeit with different gamma peak frequencies and topographies. Also, the amplitude of gamma synchronization in both planning and execution increased with target distance. Additional analysis of phase coherence revealed a gamma-coordinated long-range network involving occipital, frontal and central regions during movement execution. Gamma synchronization amplitude and phase coherence pattern reliably predicted peak velocity amplitude and timing, thus suggesting that cortical gamma oscillations play a significant role in the selection of appropriate kinematic parameters during planning and in their implementation during movement execution.


2021 ◽  
pp. 1-15
Author(s):  
Manuel Bange ◽  
Gabriel Gonzalez-Escamilla ◽  
Tabea Marquardt ◽  
Angela Radetz ◽  
Christian Dresel ◽  
...  

Background: Movement execution is impaired in patients with Parkinson’s disease. Evolving neurodegeneration leads to altered connectivity between distinct regions of the brain and altered activity at interconnected areas. How connectivity alterations influence complex movements like drawing spirals in Parkinson’s disease patients remains largely unexplored. Objective: We investigated whether deteriorations in interregional connectivity relate to impaired execution of drawing. Methods: Twenty-nine Patients and 31 age-matched healthy control participants drew spirals with both hands on a digital graphics tablet, and the regularity of drawing execution was evaluated by sample entropy. We recorded resting-state fMRI and task-related EEG, and calculated the time-resolved partial directed coherence to estimate effective connectivity for both imaging modalities to determine the extent and directionality of interregional interactions. Results: Movement performance in Parkinson’s disease patients was characterized by increased sample entropy, corresponding to enhanced irregularities in task execution. Effective connectivity between the motor cortices of both hemispheres, derived from resting-state fMRI, was significantly reduced in PD patients in comparison to controls. The connectivity strength in the nondominant to dominant hemisphere direction in both modalities was inversely correlated with irregularities during drawing, but not with the clinical state. Conclusion: Our findings suggest that interhemispheric connections are affected both at rest and during drawing movements by Parkinson’s disease. This provides novel evidence that disruptions of interhemispheric information exchange play a pivotal role for impairments of complex movement execution in Parkinson’s disease patients.


2021 ◽  
pp. 174702182110480
Author(s):  
Andras Matuz ◽  
Dimitri Van der Linden ◽  
Andras N Zsido ◽  
Arpad Csatho

Top-down cognitive control seems to be sensitive to the detrimental effects of fatigue induced by time-on-task (ToT). The planning and preparation of the motor responses may be especially vulnerable to ToT. Yet, effects of ToT specific to the different phases of movements have received little attention. Therefore, in three experiments, we assessed the effect of ToT on a mouse-pointing task. In Experiment 1, there were 16 possible target positions with variable movement directions. In Experiment 2, the layout of the targets was simplified. In Experiment 3, using cuing conditions we examined whether the effects of ToT on movement preparation and execution were caused by an increased orientation deficit or decreased phasic alertness. In each experiment, initiation of movement (preparatory phase) became slower, movement execution became faster and overall response time remained constant with increasing ToT. There was, however, no significant within-person association between the preparatory and execution phases. In Experiments 1 and 2, we found a decreasing movement time/movement error ratio, suggesting a more impulsive execution of the pointing movement. In addition, ToT was also accompanied with imprecise movement execution as indicated by the increased errors, mainly in Experiment 2. The results of Experiment 3 indicated that ToT did not induce orientation and phasic alerting deficits but rather was accompanied by decreased tonic alertness.


Author(s):  
Roberto Martin Campo‐Vera ◽  
Austin M. Tang ◽  
Angad S. Gogia ◽  
Kuang‐Hsuan Chen ◽  
Rinu Sebastian ◽  
...  

2021 ◽  
Author(s):  
János Körmendi ◽  
Eszter Ferentzi ◽  
Béla Weiss ◽  
Zoltán Nagy

AbstractThe aim of this study was to analyse the high density EEG during movement execution guided by visual attention to reveal the detailed topographic distributions of delta and theta oscillations. Twenty right-handed young subjects performed a finger tapping task, paced by a continuously transited repeating visual stimuli. Baseline corrected power of scalp current density transformed EEG was statistically assessed with cluster-based permutation testing. Delta and theta activities revealed differences in their spatial properties at the time of finger tapping execution. Theta synchronization showed a contralateral double activation in the parietal and fronto-central regions, while delta activity appeared in the central contralateral channels. Differences in the spatiotemporal topography between delta and theta activity in the course of movement execution were identified on high density EEG.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrea Mancini ◽  
Veronica Ghiglieri ◽  
Lucilla Parnetti ◽  
Paolo Calabresi ◽  
Massimiliano Di Filippo

The basal ganglia network is represented by an interconnected group of subcortical nuclei traditionally thought to play a crucial role in motor learning and movement execution. During the last decades, knowledge about basal ganglia physiology significantly evolved and this network is now considered as a key regulator of important cognitive and emotional processes. Accordingly, the disruption of basal ganglia network dynamics represents a crucial pathogenic factor in many neurological and psychiatric disorders. The striatum is the input station of the circuit. Thanks to the synaptic properties of striatal medium spiny neurons (MSNs) and their ability to express synaptic plasticity, the striatum exerts a fundamental integrative and filtering role in the basal ganglia network, influencing the functional output of the whole circuit. Although it is currently established that the immune system is able to regulate neuronal transmission and plasticity in specific cortical areas, the role played by immune molecules and immune/glial cells in the modulation of intra-striatal connections and basal ganglia activity still needs to be clarified. In this manuscript, we review the available evidence of immune-based regulation of synaptic activity in the striatum, also discussing how an abnormal immune activation in this region could be involved in the pathogenesis of inflammatory and degenerative central nervous system (CNS) diseases.


2021 ◽  
Author(s):  
Lisa Katharina Maurer ◽  
Heiko Maurer ◽  
Mathias Hegele ◽  
Hermann Mueller

The NBA player Stephen Curry has a habit of turning away from the basket right after taking three-point shots, presumably because he can predict the success of his shot. For such a consciously accessible prediction to be possible, Stephen Curry needs access to internal processes of outcome prediction and valuation. Computational simulations and empirical data suggest that the quality of internal prediction processes is related to motor expertise. Whether the results of internal predictions can reliably be consciously accessed is less clear. In the current study, 30 participants each practiced a virtual goal-oriented throwing task for 1000 trials. Every second trial, they were required to verbally predict the success of the current throw. Results showed that on average, conscious prediction accuracy was above an individually computed chance level, taking into account individual success rates and response strategies. Furthermore, prediction accuracy was related to throwing performance. Participants with better performance predicted the success of their throws more accurately than participants with poorer performance. Moreover, for the poorer performing individuals, movement execution was negatively affected by the verbalized predictions required, and they did not show variation in speech characteristics (response latency) between correct and incorrect predictions. This indicates reduced quality of conscious access to internal processes of outcome prediction.


Sign in / Sign up

Export Citation Format

Share Document