texture sensitivity
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Pellegrino ◽  
C. McNelly ◽  
C. R. Luckett

AbstractNeurotypical individuals have subjective sensitivity differences that may overlap with more heavily studied clinical populations. However, it is not known whether these subjective differences in sensory sensitivity are modality specific, or lead to behavioral shifts. In our experiment, we measured the oral touch sensitivity and food texture awareness differences in two neurotypical groups having either a high or low subjective sensitivity in touch modality. To measure oral touch sensitivity, individuals performed discrimination tasks across three types of stimuli (liquid, semisolid, and solid). Next, they performed two sorting exercises for two texture-centric food products: cookies and crackers. The stimuli that required low oral processing (liquid) were discriminated at higher rates by participants with high subjective sensitivity. Additionally, discrimination strategies between several foods in the same product space were different across the groups, and each group used attributes other than food texture as differentiating characteristics. The results show subjective touch sensitivity influences behavior (sensitivity and awareness). However, we show that the relationship between subjective touch sensitivity and behavior generalizes beyond just touch to other sensory modalities.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1024
Author(s):  
Sharon Puleo ◽  
Paolo Masi ◽  
Silvana Cavella ◽  
Rossella Di Monaco

The study aimed to investigate the role of sensitivity to flowability on food liking and choice, the relationship between sensitivity to flowability and food neophobia, and its role in food liking. Five chocolate creams were prepared with different levels of flowability, and rheological measurements were performed to characterise them. One hundred seventy-six subjects filled in the Food Neophobia Scale and a food choice questionnaire (FCq). The FCq was developed to evaluate preferences within a pair of food items similar in flavour but different in texture. Secondly, the subjects evaluated their liking for creams (labelled affective magnitude (LAM) scale) and the flowability intensity (generalised labelled magnitude (gLM) scale). The subjects were clustered into three groups of sensitivity and two groups of choice preference. The effect of individual flowability sensitivity on food choice was investigated. Finally, the subjects were clustered into two groups according to their food neophobia level. The sensitivity to flowability significantly affected the liking of chocolate creams and the solid food choice. The liking of chocolate creams was also affected by the individual level of neophobia (p = 0.01), which, in turn, was not correlated to flowability sensitivity. These results confirm that texture sensitivity and food neophobia affect what a person likes and drives what a person chooses to eat.


2021 ◽  
Author(s):  
Robert Pellegrino ◽  
Chloe R. McNelly ◽  
Curtis Luckett

Neurotypical individuals have subjective sensitivity differences that may overlap with the more heavily studied clinical populations. However, it is not known whether these subjective differences in sensory sensitivity are modality specific or lead to behavioral shifts. In our experiment, we measured the touch sensitivity and texture awareness differences in two neurotypical groups having either a high or low subjective sensitivity in touch modality. To measure touch sensitivity, individuals performed discrimination tasks across three types of stimuli (liquid, semi-solid, and solid). Next, they performed two sorting exercises for two texture-centric food products: cookies and crackers. The stimuli that required low oral processing (liquid) were discriminated at higher rates by the high subjective sensitivity compared to the solid stimuli. Additionally, discrimination strategies between several foods in the same product space were different across the groups, and each group used attributes other than texture as differentiating characteristics. The results show subjective touch sensitivity influences behavior (sensitivity and awareness). However, we show that the relationship between subjective touch sensitivity and behavior generalizes across several modalities.


2021 ◽  
pp. 126-142
Author(s):  
Gregory William Schwartz
Keyword(s):  

2020 ◽  
Vol 20 (7) ◽  
pp. 21
Author(s):  
Md Nasir Uddin Laskar ◽  
Luis Gonzalo Sanchez Giraldo ◽  
Odelia Schwartz

2018 ◽  
Vol 120 (5) ◽  
pp. 2334-2350 ◽  
Author(s):  
Wan Jiang ◽  
François Tremblay ◽  
C. Elaine Chapman

Caudal primary motor cortex (M1, area 4) is sensitive to cutaneous inputs, but the extent to which the physical details of complex stimuli are encoded is not known. We investigated the sensitivity of M1 neurons (4 Macaca mulatta monkeys) to textured stimuli (smooth/rough or rough/rougher) during the performance of a texture discrimination task and, for some cells, during a no-task condition (same surfaces; no response). The recordings were made from the hemisphere contralateral to the stimulated digits; the motor response (sensory decision) was made with the nonstimulated arm. Most M1 cells were modulated during surface scanning in the task (88%), but few of these were texture-related (24%). In contrast, 44% of M1 neurons were texture related in the no-task condition. Recordings from the neighboring primary somatosensory cortex (S1), the potential source of texture-related signals to M1, showed that S1 neurons were significantly more likely to be texture related during the task (57 vs 24%) than M1. No difference was observed in the no-task condition (52 vs. 44%). In these recordings, the details about surface texture were relevant for S1 but not for M1. We suggest that tactile inputs to M1 were selectively suppressed when the animals were engaged in the task. S1 was spared these controls, as the same inputs were task-relevant. Taken together, we suggest that the suppressive effects are most likely exerted directly at the level of M1, possibly through the activation of a top-down gating mechanism specific to motor set/intention. NEW & NOTEWORTHY Sensory feedback is important for motor control, but we have little knowledge of the contribution of sensory inputs to M1 discharge during behavior. We showed that M1 neurons signal changes in tactile texture, but mainly outside the context of a texture discrimination task. Tactile inputs to M1 were selectively suppressed during the task because this input was not relevant for the recorded hemisphere, which played no role in generating the discrimination response.


2016 ◽  
Vol 115 (4) ◽  
pp. 1767-1785 ◽  
Author(s):  
Stéphanie Bourgeon ◽  
Alexandra Dépeault ◽  
El-Mehdi Meftah ◽  
C. Elaine Chapman

This study investigated the hypothesis that a simple intensive code, based on mean firing rate, could explain the cortical representation of subjective roughness intensity and its invariance with scanning speed. We examined the sensitivity of neurons in the cutaneous, finger representation of primary somatosensory cortex (S1) to a wide range of textures [1 mm high, raised-dot surfaces; spatial periods (SPs), 1.5–8.5 mm], scanned under the digit tips at different speeds (40–115 mm/s). Since subjective roughness estimates show a monotonic increase over this range and are independent of speed, we predicted that the mean firing rate of a subgroup of S1 neurons would share these properties. Single-unit recordings were made in four alert macaques (areas 3b, 1 and 2). Cells whose discharge rate showed a monotonic increase with SP, independent of speed, were particularly concentrated in area 3b. Area 2 was characterized by a high proportion of cells sensitive to speed, with or without texture sensitivity. Area 1 had intermediate properties. We suggest that area 3b and most likely area 1 play a key role in signaling roughness intensity, and that a mean rate code, signaled by both slowly and rapidly adapting neurons, is present at the level of area 3b. Finally, the substantial proportion of neurons that showed a monotonic change in discharge limited to a small range of SPs (often independent of response saturation) could play a role in discriminating smaller changes in SP.


2013 ◽  
Vol 110 (7) ◽  
pp. 1554-1566 ◽  
Author(s):  
Alexandra Dépeault ◽  
El-Mehdi Meftah ◽  
C. Elaine Chapman

Moving stimuli activate all of the mechanoreceptive afferents involved in discriminative touch, but their signals covary with several parameters, including texture. Despite this, the brain extracts precise information about tactile speed, and humans can scale the tangential speed of moving surfaces as long as they have some surface texture. Speed estimates, however, vary with texture: lower estimates for rougher surfaces (increased spatial period, SP). We hypothesized that the discharge of cortical neurons playing a role in scaling tactile speed should covary with speed and SP in the same manner. Single-cell recordings ( n = 119) were made in the hand region of primary somatosensory cortex (S1) of awake monkeys while raised-dot surfaces (longitudinal SPs, 2–8 mm; periodic or nonperiodic) were displaced under their fingertips at speeds of 40–105 mm/s. Speed sensitivity was widely distributed (area 3b, 13/25; area 1, 32/51; area 2, 31/43) and almost invariably combined with texture sensitivity (82% of cells). A subset of cells (27/64 fully tested speed-sensitive cells) showed a graded increase in discharge with increasing speed for testing with both sets of surfaces (periodic, nonperiodic), consistent with a role in tactile speed scaling. These cells were almost entirely confined to caudal S1 (areas 1 and 2). None of the speed-sensitive cells, however, showed a pattern of decreased discharge with increased SP, as found for subjective speed estimates in humans. Thus further processing of tactile motion signals, presumably in higher-order areas, is required to explain human tactile speed scaling.


Sign in / Sign up

Export Citation Format

Share Document